One of the most important parameters for oceanic internal waves (IWs) is their amplitude. We have developed a method to retrieve the IW amplitude from nautical X-Band radar images based on the KdV equation for continu...One of the most important parameters for oceanic internal waves (IWs) is their amplitude. We have developed a method to retrieve the IW amplitude from nautical X-Band radar images based on the KdV equation for continuous stratified finite depth system. We have also tested the method of measuring the amplitude of IWs from X-Band radar backscatter image sequences acquired on June 2009 in the northeastern South China Sea. The method was applied in several radar images. Experiments show that the retrieval amplitudes are consistent with the in-situ observational amplitudes of IWs by using the towed thermistor chain and conductivity-temperature-depth (CTD) profile. The uncertainty of the method is also discussed.展开更多
A principle of generating the nonlinear large-amplitude internal wave in a stratified fluid tank with large cross-section is pro- posed according to the 'jalousie' control mode. A new wave-maker based on the princip...A principle of generating the nonlinear large-amplitude internal wave in a stratified fluid tank with large cross-section is pro- posed according to the 'jalousie' control mode. A new wave-maker based on the principle was manufactured and the experi- ments on the generation and evolution of internal solitary wave were conducted. Both the validity of the new device and ap- plicability range of the KdV-type internal soliton theory were tested. Furthermore, a measurement technique of hydrodynamic load of internal waves was developed. By means of accurately measuring slight variations of internal wave forces exerted on a slender body in the tank, their interaction characteristics were determined. It is shown that through establishing the similarity between the model scale in the stratified fluid tank and the full scale in the numerical simulation the obtained measurement re- suits of internal wave forces are confirmed to be correct.展开更多
Amplitude equations governing the nonlinear resonant interaction of equatorial baroclinic and barotropic Rossby waves were derived by Majda and Biello and used as a model for long range interactions (teleconnections...Amplitude equations governing the nonlinear resonant interaction of equatorial baroclinic and barotropic Rossby waves were derived by Majda and Biello and used as a model for long range interactions (teleconnections) between the tropical and midlatitude troposphere. An overview of that derivation is nonlinear wave theory, but not in atmospheric presented and geared to readers versed in sciences. In the course of the derivation, two other sets of asymptotic equations are presented: the long equatorial wave equations and the weakly nonlinear, long equatorial wave equations. A linear transformation recasts the amplitude equations as nonlinear and linearly coupled KdV equations governing the amplitude of two types of modes, each of which consists of a coupled tropical/midlatitude flow. In the limit of Rossby waves with equal dispersion, the transformed amplitude equations become two KdV equations coupled only through nonlinear fluxes. Four numerical integrations are presented which show (i) the interaction of two solitons, one from either mode, (ii) and (iii) the interaction of a soliton in the presence of different mean wind shears, and (iv) the interaction of two solitons mediated by the presence of a mean wind shear.展开更多
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX-YW-12-04)the National Natural Science Foundation of China (No. 41030855)+1 种基金the National High Technology Research and Development Program of China (863 Program) (No. 2008AA09A403)the Marine Public Welfare Project of China (No. 201105032)
文摘One of the most important parameters for oceanic internal waves (IWs) is their amplitude. We have developed a method to retrieve the IW amplitude from nautical X-Band radar images based on the KdV equation for continuous stratified finite depth system. We have also tested the method of measuring the amplitude of IWs from X-Band radar backscatter image sequences acquired on June 2009 in the northeastern South China Sea. The method was applied in several radar images. Experiments show that the retrieval amplitudes are consistent with the in-situ observational amplitudes of IWs by using the towed thermistor chain and conductivity-temperature-depth (CTD) profile. The uncertainty of the method is also discussed.
基金supported by the National Natural Science Foundation of China(Grant No.11072267)the National High Technology Research and Development Program of China(Grant No.2008AA09Z316)the Pre-Research Foundation of PLA University of Science&Technology(Grant No.KYLYZLXY1202)
文摘A principle of generating the nonlinear large-amplitude internal wave in a stratified fluid tank with large cross-section is pro- posed according to the 'jalousie' control mode. A new wave-maker based on the principle was manufactured and the experi- ments on the generation and evolution of internal solitary wave were conducted. Both the validity of the new device and ap- plicability range of the KdV-type internal soliton theory were tested. Furthermore, a measurement technique of hydrodynamic load of internal waves was developed. By means of accurately measuring slight variations of internal wave forces exerted on a slender body in the tank, their interaction characteristics were determined. It is shown that through establishing the similarity between the model scale in the stratified fluid tank and the full scale in the numerical simulation the obtained measurement re- suits of internal wave forces are confirmed to be correct.
基金Project supported by the National Science Foundation (No.DMS-0604947)
文摘Amplitude equations governing the nonlinear resonant interaction of equatorial baroclinic and barotropic Rossby waves were derived by Majda and Biello and used as a model for long range interactions (teleconnections) between the tropical and midlatitude troposphere. An overview of that derivation is nonlinear wave theory, but not in atmospheric presented and geared to readers versed in sciences. In the course of the derivation, two other sets of asymptotic equations are presented: the long equatorial wave equations and the weakly nonlinear, long equatorial wave equations. A linear transformation recasts the amplitude equations as nonlinear and linearly coupled KdV equations governing the amplitude of two types of modes, each of which consists of a coupled tropical/midlatitude flow. In the limit of Rossby waves with equal dispersion, the transformed amplitude equations become two KdV equations coupled only through nonlinear fluxes. Four numerical integrations are presented which show (i) the interaction of two solitons, one from either mode, (ii) and (iii) the interaction of a soliton in the presence of different mean wind shears, and (iv) the interaction of two solitons mediated by the presence of a mean wind shear.