采用高精度的拟谱方法,数值模拟了层结海洋中小振幅内行进波的演变和破碎过程.在演变过程中,导致内波破碎的PSI不稳定机制在共振相互作用中逐渐占据主导地位,能量从初级波向低频、高波数运动缓慢传递并形成一次级波包,随即破碎发生.破...采用高精度的拟谱方法,数值模拟了层结海洋中小振幅内行进波的演变和破碎过程.在演变过程中,导致内波破碎的PSI不稳定机制在共振相互作用中逐渐占据主导地位,能量从初级波向低频、高波数运动缓慢传递并形成一次级波包,随即破碎发生.破碎后产生的层化湍流引起的强烈混合以及湍流间歇性可从总能量和涡度峰度随时间的变化趋势看出.我们分析了层化湍流的一些统计特性,包括动能和有效位能沿垂向波数ky的功率谱.结果表明,动能和有效位能谱都存在一个谱段满足k-3y律,且分别可表示为0.1N4k-3y和0.2N4k-3y(N为Brunt V is l频率),通常称其为浮力子区.另外,我们分析了Cox数(湍流扩散系数与分子扩散系数之比),在层化湍流维持在一定强度时,计算结果和由海洋内区观测(远离内波强生成源和复杂地形)所推测的结论较为吻合.展开更多
Fault zone trapped waves (FZTWs) mainly travel along the fractured fault zone (FZ) which is of low velocity and high attenuation. FZTWs often carry significant information about a fault's internal structure, so i...Fault zone trapped waves (FZTWs) mainly travel along the fractured fault zone (FZ) which is of low velocity and high attenuation. FZTWs often carry significant information about a fault's internal structure, so it is important to understand their wave field characteristics for FZ structure inversion. Most previous simulations are based on vertical faults, while in this paper we implement the FZTW simulations on vertical or inclined faults and compare their wave fields in both time and frequency domains. The results show that the existence of fault zone and inclined angle of fault can significantly influence the features of waves near faults. In amplitude, a fault zone can generate a larger amplitude of waves. The velocity contrast between two wails of fault may lead to amplification of amplitudes in the low velocity fault wall. In frequency, a fault zone tends to influence the waves in the low frequency range. In a pattern of particle polarization of FZTWs, it tends to be single direction for vertical faults but fork to multiple directions for inclined faults, which might provide a new way to study the fault zone with FZTWs. These conclusions may be valuable for FZ structure inversion, and will enhance the knowledge on near-fault strong ground motions.展开更多
文摘采用高精度的拟谱方法,数值模拟了层结海洋中小振幅内行进波的演变和破碎过程.在演变过程中,导致内波破碎的PSI不稳定机制在共振相互作用中逐渐占据主导地位,能量从初级波向低频、高波数运动缓慢传递并形成一次级波包,随即破碎发生.破碎后产生的层化湍流引起的强烈混合以及湍流间歇性可从总能量和涡度峰度随时间的变化趋势看出.我们分析了层化湍流的一些统计特性,包括动能和有效位能沿垂向波数ky的功率谱.结果表明,动能和有效位能谱都存在一个谱段满足k-3y律,且分别可表示为0.1N4k-3y和0.2N4k-3y(N为Brunt V is l频率),通常称其为浮力子区.另外,我们分析了Cox数(湍流扩散系数与分子扩散系数之比),在层化湍流维持在一定强度时,计算结果和由海洋内区观测(远离内波强生成源和复杂地形)所推测的结论较为吻合.
基金sponsored by the Key Basic Scientific Research Program of Institute of Earth Science,CEA(0213241302)
文摘Fault zone trapped waves (FZTWs) mainly travel along the fractured fault zone (FZ) which is of low velocity and high attenuation. FZTWs often carry significant information about a fault's internal structure, so it is important to understand their wave field characteristics for FZ structure inversion. Most previous simulations are based on vertical faults, while in this paper we implement the FZTW simulations on vertical or inclined faults and compare their wave fields in both time and frequency domains. The results show that the existence of fault zone and inclined angle of fault can significantly influence the features of waves near faults. In amplitude, a fault zone can generate a larger amplitude of waves. The velocity contrast between two wails of fault may lead to amplification of amplitudes in the low velocity fault wall. In frequency, a fault zone tends to influence the waves in the low frequency range. In a pattern of particle polarization of FZTWs, it tends to be single direction for vertical faults but fork to multiple directions for inclined faults, which might provide a new way to study the fault zone with FZTWs. These conclusions may be valuable for FZ structure inversion, and will enhance the knowledge on near-fault strong ground motions.