The bamboo powder/polycaprolactone composites (BPPC) were prepared by torque-rheometer to investigate the effects of recipes and processing conditions on the rheological properties of BPPC. The morphological behavior ...The bamboo powder/polycaprolactone composites (BPPC) were prepared by torque-rheometer to investigate the effects of recipes and processing conditions on the rheological properties of BPPC. The morphological behavior and mechanical properties of BPPC were also studied. Results showed that the optimum recipe for composite materials is composed of 70% of polycaprolactone, 30% of bamboo powder according to volume, 1.6 % of aluminate coupling agent, 1.2% of stearic acid, and 2% of paraffin to bamboo powder according to mass ratio. The optimum processing condition parameters were determined as the rotational speed at 50 r·min-1 and the temperature at 100oC for BPPC. The BPPC (containing 30 copies bamboo powder) possessed eminent interfacial compatibility and mechanical properties of BPPC.展开更多
The initial shear stress and plastic cohesion ( η ) are the most important parameters reflecting the rheological properties of the paste slurry. The rheological parameters as well as the quantitative relationship amo...The initial shear stress and plastic cohesion ( η ) are the most important parameters reflecting the rheological properties of the paste slurry. The rheological parameters as well as the quantitative relationship among the consumption of different fill materials were obtained through the experiment and research on these parameters. They can be used to predict the scope of the values of τ and η in production for a given ratio, which can reduce the conveying resistance of fill slurry along the pipelines and avoid the blockage of the pipelines. It is found that the rheological model of the total tailing slurry belongs to the Bingham type, which has a feature of strong internal structure and large initial shear stress. The calculation formula for the resistance loss of pipelines conforms nicely to the field test and the actual production in Jinchuan Nickel Mine.展开更多
To study seasonal and intraseasonal variations of the Taiwan Warm Current (TWC) in detail,Rotated Empirical Orthogonal Function (REOF) and Extended Associate Pattern Analysis (EAPA) are jointly adopted with daily sea ...To study seasonal and intraseasonal variations of the Taiwan Warm Current (TWC) in detail,Rotated Empirical Orthogonal Function (REOF) and Extended Associate Pattern Analysis (EAPA) are jointly adopted with daily sea surface salinity (SSS), sea surface temperature (SST) and sea surface height (SSH)datasets covering 1126 days from American Navy Experimental Real-Time East Asian Seas Ocean Nowcast System in the present paper. Results show that the first and second REOFs of SST in the southern East China Sea(SECS) account for 50,8% and 39.8% of the total variance. The surface TWC contains persistent (multi-year mean), seasonal and intraseasonal components. The persistent one mainly inosculates with the Kuroshio but the seasonal and intraseasonal ones are usually active only on the continental shelf. Its persistent component is produced by inertial flow of the Kuroshio, however its seasonal and intraseasonal ones seems coming from seasonal and intraseasonal oscillations of monsoon force. The seasonal one reaches its maximum in late summer,lasting about four months and the intraseasonal one takes place at any seasons, lasting more than 40 days.展开更多
This work investigates the boreal-summer intraseasonal variability(ISV)of the precipitation over the lower reaches of the Yangtze River basin(LYRB)during 1979–2016,based on daily Climate Prediction Center global prec...This work investigates the boreal-summer intraseasonal variability(ISV)of the precipitation over the lower reaches of the Yangtze River basin(LYRB)during 1979–2016,based on daily Climate Prediction Center global precipitation data.The ISV of the summer monsoon rainfall over the LYRB is mainly dominated by the lower-frequency 12–20-day variability and the higher-frequency 8–12-day variability.The lower-frequency variability is found to be related to the northwestwardpropagating quasi-biweekly oscillation(QBWO)over the western North Pacific spanning the South China Sea(SCS)and Philippine Sea,while the higher-frequency variability is related to the southeastward propagating midlatitude wave train(MLWT).Moreover,not each active QBWO(MLWT)in the SCS(East Asia)can generate ISV components of the precipitation anomaly over the LYRB.The QBWO can change the rainfall significantly with the modulation of mean state precipitation,while the quasi-11-day mode mainly depends on the intensity of the MLWT rather than the mean precipitation change.These findings should enrich our understanding of the ISV of the East Asian summer monsoon and improve its predictability.展开更多
The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure mode...The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags.展开更多
The gridded sea level anomaly(SLA) data-set provided by AVISO is used to track the propagation of intraseasonal Kelvin waves in the Indonesian Throughflow(ITF) region. The large root mean square of intraseasonal S...The gridded sea level anomaly(SLA) data-set provided by AVISO is used to track the propagation of intraseasonal Kelvin waves in the Indonesian Throughflow(ITF) region. The large root mean square of intraseasonal SLA along the Sumatra and Java coast is closely related to the propagation of intraseasonal Kelvin waves that derive from the equatorial Indian Ocean. These Kelvin waves are further found to propagate following different pathways at the Lombok Strait. Pathway A propagates eastward throughout the Sumba Strait and Savu Sea to reach the Ombai Strait. Pathway B penetrates into Lombok and propagates northward to reach the Makassar Strait. Pathway C propagates southeastward along the southwest coast of the Sumba Island. The equatorial Kelvin waves take around 15 days to travel from the equatorial Indian Ocean to Lombok Strait, and around 5 days to penetrate into the Makassar and Ombai straits. The Kelvin wave-induced SLA persists in the ITF region for an additional 5 days and then diminishes subsequently. The phase speeds of these intraseasonal Kelvin waves along Pathways A, B, and C are 1.91–2.86, 1.69, and 1.96 m s^-1,respectively—in agreement with the first two baroclinic modes of Kelvin waves.展开更多
Weak stratospheric polar vortex(WPV)events during winter months were investigated.WPV events were identified as being weakest in December,accompanied by the most dramatic increase in geopotential height over the polar...Weak stratospheric polar vortex(WPV)events during winter months were investigated.WPV events were identified as being weakest in December,accompanied by the most dramatic increase in geopotential height over the polar region.After the onset of a December WPV event,the dynamic processes influencing Eurasian temperature can be split into two separate periods.Period I(lag of 0-25 days)is referred to as the stratosphere-troposphere interactions period,as it is mainly characterized by stratospheric signals propagating downwards.In Period I,a stratospheric negative Northern Annular Mode(NAM)pattern associated with the WPV propagates downwards,inducing a negative NAM in the troposphere.The anomalous low centers over the Mediterranean and North Pacific bring cold advection to northern Eurasia,resulting in a north-cold-south-warm dipole pattern over Eurasia.The zero line between negative and positive temperature anomalies moves southwards during days 5-20.Stratospheric cold anomalies at midlatitudes propagate downwards to high latitudes in the troposphere and contribute to the dipole structure.During PeriodⅡ(lag of 25-40 days),as downward signals from the stratosphere have vanished,the dynamic processes mainly take place within the troposphere.Specifically,a wave train is initiated from the North Atlantic region to northern Europe.The propagation of wave activity flux intensifies a cyclonic anomaly over northern Europe,which brings cold advection to Scandinavia and warm advection to central Asia.Therefore,a northwest-cold-southeast-warm dipole structure occupies Eurasia and migrates southeastwards during this period.展开更多
The performances of CMIP5 atmospheric general circulation models (AGCMs) in simulating the western North Pacific subtropical high (WNPSH) in El Nino decaying summers are examined in this study. Results show that m...The performances of CMIP5 atmospheric general circulation models (AGCMs) in simulating the western North Pacific subtropical high (WNPSH) in El Nino decaying summers are examined in this study. Results show that most models can reproduce the spatial pattern of both climatological and anomalous circulation associated with the WNPSH in El Nino decaying summers. Most CMIP5 AGCMs can capture the westward shift of the WNPSH in El Nino decaying summers compared with the climatological location. With respect to the sub-seasonal variation of the WNPSH, the performances of these AGCMs in reproducing the northward jump of the WNPSH are better than simulating the eastward retreat of the WNPSH from July to August. Twenty-one out of twenty-two (20 out of 22) models can reasonably reproduce the northward jump of the WNPSH in El Nino decaying summers (climatology), while only 7 out of 22 (8 out of 22) AGCMs can reasonably reproduce the eastward retreat of the WNPSH in El Nino decaying summers (climatology). In addition, there is a close connection between the climatological WNPSH location bias and that in El Nino decaying summers.展开更多
In this work, the easy to use, simple and direct equations were formulated and tested. These equations can be used to calculate the mean values of the heat transfer coefficients of inside tube flow during phase change...In this work, the easy to use, simple and direct equations were formulated and tested. These equations can be used to calculate the mean values of the heat transfer coefficients of inside tube flow during phase change. Analytical and experimental methods were used to correlate these equations. Two different forms were used, one for evaporation case and the other for condensation case. Carbon dioxide, CO2, was used as case study. Correlated values of the mean heat transfer coefficients (hcor,.) were compared with the experimental results (he^e) and with other published result, a good agreement was noticed. The resulted correlations can be used to simplify the design and performance studies of both condensers and evaporators.展开更多
基金funded by Natural Science Founda-tion of Fujian Province (No. 2008J0227)Science and TechnologyOffice of Fujian Province (No. 2007F5030)
文摘The bamboo powder/polycaprolactone composites (BPPC) were prepared by torque-rheometer to investigate the effects of recipes and processing conditions on the rheological properties of BPPC. The morphological behavior and mechanical properties of BPPC were also studied. Results showed that the optimum recipe for composite materials is composed of 70% of polycaprolactone, 30% of bamboo powder according to volume, 1.6 % of aluminate coupling agent, 1.2% of stearic acid, and 2% of paraffin to bamboo powder according to mass ratio. The optimum processing condition parameters were determined as the rotational speed at 50 r·min-1 and the temperature at 100oC for BPPC. The BPPC (containing 30 copies bamboo powder) possessed eminent interfacial compatibility and mechanical properties of BPPC.
文摘The initial shear stress and plastic cohesion ( η ) are the most important parameters reflecting the rheological properties of the paste slurry. The rheological parameters as well as the quantitative relationship among the consumption of different fill materials were obtained through the experiment and research on these parameters. They can be used to predict the scope of the values of τ and η in production for a given ratio, which can reduce the conveying resistance of fill slurry along the pipelines and avoid the blockage of the pipelines. It is found that the rheological model of the total tailing slurry belongs to the Bingham type, which has a feature of strong internal structure and large initial shear stress. The calculation formula for the resistance loss of pipelines conforms nicely to the field test and the actual production in Jinchuan Nickel Mine.
基金Supported by the National Basic Research Program (No. G1999043803), Hi-Tetch Research and Development Program of China (No. 2001AA633060) and the grant of Institute of Oceanology, Chinese Academy of Sciences (No.L370221117).
文摘To study seasonal and intraseasonal variations of the Taiwan Warm Current (TWC) in detail,Rotated Empirical Orthogonal Function (REOF) and Extended Associate Pattern Analysis (EAPA) are jointly adopted with daily sea surface salinity (SSS), sea surface temperature (SST) and sea surface height (SSH)datasets covering 1126 days from American Navy Experimental Real-Time East Asian Seas Ocean Nowcast System in the present paper. Results show that the first and second REOFs of SST in the southern East China Sea(SECS) account for 50,8% and 39.8% of the total variance. The surface TWC contains persistent (multi-year mean), seasonal and intraseasonal components. The persistent one mainly inosculates with the Kuroshio but the seasonal and intraseasonal ones are usually active only on the continental shelf. Its persistent component is produced by inertial flow of the Kuroshio, however its seasonal and intraseasonal ones seems coming from seasonal and intraseasonal oscillations of monsoon force. The seasonal one reaches its maximum in late summer,lasting about four months and the intraseasonal one takes place at any seasons, lasting more than 40 days.
基金This work was supported by the National Natural Science Foundation of China[grant number 41420104002]the Natural Science Foundation of Jiangsu Province[grant numbers BK20150907 and 14KJA170002].
文摘This work investigates the boreal-summer intraseasonal variability(ISV)of the precipitation over the lower reaches of the Yangtze River basin(LYRB)during 1979–2016,based on daily Climate Prediction Center global precipitation data.The ISV of the summer monsoon rainfall over the LYRB is mainly dominated by the lower-frequency 12–20-day variability and the higher-frequency 8–12-day variability.The lower-frequency variability is found to be related to the northwestwardpropagating quasi-biweekly oscillation(QBWO)over the western North Pacific spanning the South China Sea(SCS)and Philippine Sea,while the higher-frequency variability is related to the southeastward propagating midlatitude wave train(MLWT).Moreover,not each active QBWO(MLWT)in the SCS(East Asia)can generate ISV components of the precipitation anomaly over the LYRB.The QBWO can change the rainfall significantly with the modulation of mean state precipitation,while the quasi-11-day mode mainly depends on the intensity of the MLWT rather than the mean precipitation change.These findings should enrich our understanding of the ISV of the East Asian summer monsoon and improve its predictability.
基金provided by the Project of National Scientific and Technical Supporting Programs Funded of China(No.2012BAB13B03)
文摘The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags.
基金supported by the National Natural Science Foundation of China(NSFC)[grant numbers 41476025,41506036,41306031]NSFC-Shandong Joint Fund for Marine Science Research Centers[grant number U1406404]+1 种基金China Postdoctoral Science Foundation Funded Project[grant number 2014M561883]Postdoctoral Innovation Foundation of Shandong Province[grant number 201403019]
文摘The gridded sea level anomaly(SLA) data-set provided by AVISO is used to track the propagation of intraseasonal Kelvin waves in the Indonesian Throughflow(ITF) region. The large root mean square of intraseasonal SLA along the Sumatra and Java coast is closely related to the propagation of intraseasonal Kelvin waves that derive from the equatorial Indian Ocean. These Kelvin waves are further found to propagate following different pathways at the Lombok Strait. Pathway A propagates eastward throughout the Sumba Strait and Savu Sea to reach the Ombai Strait. Pathway B penetrates into Lombok and propagates northward to reach the Makassar Strait. Pathway C propagates southeastward along the southwest coast of the Sumba Island. The equatorial Kelvin waves take around 15 days to travel from the equatorial Indian Ocean to Lombok Strait, and around 5 days to penetrate into the Makassar and Ombai straits. The Kelvin wave-induced SLA persists in the ITF region for an additional 5 days and then diminishes subsequently. The phase speeds of these intraseasonal Kelvin waves along Pathways A, B, and C are 1.91–2.86, 1.69, and 1.96 m s^-1,respectively—in agreement with the first two baroclinic modes of Kelvin waves.
基金supported by the National Natural Science Foundation of China [grant numbers 41730964,41575079,and 41421004]
文摘Weak stratospheric polar vortex(WPV)events during winter months were investigated.WPV events were identified as being weakest in December,accompanied by the most dramatic increase in geopotential height over the polar region.After the onset of a December WPV event,the dynamic processes influencing Eurasian temperature can be split into two separate periods.Period I(lag of 0-25 days)is referred to as the stratosphere-troposphere interactions period,as it is mainly characterized by stratospheric signals propagating downwards.In Period I,a stratospheric negative Northern Annular Mode(NAM)pattern associated with the WPV propagates downwards,inducing a negative NAM in the troposphere.The anomalous low centers over the Mediterranean and North Pacific bring cold advection to northern Eurasia,resulting in a north-cold-south-warm dipole pattern over Eurasia.The zero line between negative and positive temperature anomalies moves southwards during days 5-20.Stratospheric cold anomalies at midlatitudes propagate downwards to high latitudes in the troposphere and contribute to the dipole structure.During PeriodⅡ(lag of 25-40 days),as downward signals from the stratosphere have vanished,the dynamic processes mainly take place within the troposphere.Specifically,a wave train is initiated from the North Atlantic region to northern Europe.The propagation of wave activity flux intensifies a cyclonic anomaly over northern Europe,which brings cold advection to Scandinavia and warm advection to central Asia.Therefore,a northwest-cold-southeast-warm dipole structure occupies Eurasia and migrates southeastwards during this period.
基金supported by the National Natural Science Foundation of China[grant numbers 41475052,41405058]China Postdoctoral Science Foundation[grant number 2015M571095]Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010403]
文摘The performances of CMIP5 atmospheric general circulation models (AGCMs) in simulating the western North Pacific subtropical high (WNPSH) in El Nino decaying summers are examined in this study. Results show that most models can reproduce the spatial pattern of both climatological and anomalous circulation associated with the WNPSH in El Nino decaying summers. Most CMIP5 AGCMs can capture the westward shift of the WNPSH in El Nino decaying summers compared with the climatological location. With respect to the sub-seasonal variation of the WNPSH, the performances of these AGCMs in reproducing the northward jump of the WNPSH are better than simulating the eastward retreat of the WNPSH from July to August. Twenty-one out of twenty-two (20 out of 22) models can reasonably reproduce the northward jump of the WNPSH in El Nino decaying summers (climatology), while only 7 out of 22 (8 out of 22) AGCMs can reasonably reproduce the eastward retreat of the WNPSH in El Nino decaying summers (climatology). In addition, there is a close connection between the climatological WNPSH location bias and that in El Nino decaying summers.
文摘In this work, the easy to use, simple and direct equations were formulated and tested. These equations can be used to calculate the mean values of the heat transfer coefficients of inside tube flow during phase change. Analytical and experimental methods were used to correlate these equations. Two different forms were used, one for evaporation case and the other for condensation case. Carbon dioxide, CO2, was used as case study. Correlated values of the mean heat transfer coefficients (hcor,.) were compared with the experimental results (he^e) and with other published result, a good agreement was noticed. The resulted correlations can be used to simplify the design and performance studies of both condensers and evaporators.