A cDNA, designated as rtSH3p13, was isolated from a rat testis cDNA library. It consists of 1463 bp nuclear acids,which encodes a protein of 312 amino acids and was assigned the GenBank accession number AF227439. The ...A cDNA, designated as rtSH3p13, was isolated from a rat testis cDNA library. It consists of 1463 bp nuclear acids,which encodes a protein of 312 amino acids and was assigned the GenBank accession number AF227439. The deduced rtSH3p13 protein is a truncated isoform of SH3p13 as a result of mRNA alternative splicing. It is mainly expressed in the rat testis, detected in spermatids at the steps 8-19 of spermiogenesis, and found around the acrosome. During postnatal development, rtSH3p13 appears on day 18 and reaches maximum on day 60. Further experimental results suggested that rtSH3p13 forms a complex with activated epidermal growth factor receptor (EGFR) and interacts with synaptojanin I. Surprisingly, similar to SH3 domain, the V region of rtSH3p13 also inhibits endocytosis in CHO cells.Our results reveal a link between an rtSH3p13-synaptojanin-clathrin complex-mediated formation of pits and the process of spermiogenesis.展开更多
Compound YSY-01A, a recently synthesized proteasome inhibitor, has shown potent growth-inhibitory effect on tumor cells in previous researches. However, the mechanism of its inhibitory effects, especially on cell cycl...Compound YSY-01A, a recently synthesized proteasome inhibitor, has shown potent growth-inhibitory effect on tumor cells in previous researches. However, the mechanism of its inhibitory effects, especially on cell cycle, remains largely unclear. This study aimed to evaluate the correlation between cell cycle arrest effect of YSY-01A and its anti-cancer effect, and to probe the possible molecular mechanisms for its effects on human ovarian cancer SK-OV-3 cells. The results suggested that YSY-01A significantly (P〈0.05) inhibited cellular proliferation of SK-OV-3 cells in a concentration-dependent and time-dependent manner. Furthermore, YSY-01A induced a G2/M cell cycle arrest of SK-OV-3 cells. Further investigation revealed that YSY-01A significantly (P〈0.05) changed the expression levels of a series of cell cycle related protein, such as cyclin B1, cdc2, and p-cdc2 (T14). Meanwhile, YSY-01A could inhibit the TNF-a-induced NF-kB nuclear translocation and lead to the increase of 1kBa as well as the decrease of IKK and Gadd45a In conclusion, YSY-01A showed remarkable anti-cancer activity on SK-OV-3 cells, and its molecular mechanisms were related to G2/M cell cycle arrest.展开更多
Compound YSY-01A, a recently synthesized proteasome inhibitor, has shown potent growth-inhibitory effect on tumor cells in previous researches. However, the mechanism of its inhibitory effects, especially on cell cycl...Compound YSY-01A, a recently synthesized proteasome inhibitor, has shown potent growth-inhibitory effect on tumor cells in previous researches. However, the mechanism of its inhibitory effects, especially on cell cycle, remains largely unclear. This study aims to evaluate the correlation between cell cycle arrest effect of YSY-01A and its anti-cancer effect, and to probe the possible molecular mechanisms for its effects on human colorectal adenocarcinoma cells HT-29. The results suggested that YSY-01A significantly (P0.05) inhibited cellular proliferation of HT-29 cells in a time and concentration-dependent manner. Furthermore, YSY-01A suppressed the G 2 /M transition of HT-29 cells, whereas the mitotic inhibitor paclitaxel induced M phase accumulation. Further investigation revealed that YSY-01A significantly (P0.05) up-regulated the expression levels of a series of cell cycle related protein, such as cyclin B1, Wee1, p-cdc2 (Tyr15), p53, p21, and p27. The HT-29 cells only exhibited typical cytotoxic symptom when YSY-01A concentration reached 0.5 μM (P0.05), which was above the dose we used in the mechanism research. In conclusion, YSY-01A showed remarkable anti-cancer activity on HT-29 cells, and its molecular mechanisms are related to G 2 /M cell cycle transition arrest.展开更多
基金This study was supported by grants from National Natural Science Foundation of China(No.30240019,30300060)National High Technology Research and Development Program of China(No.2001 AA221I31)+1 种基金Major State Basic Research Project(No.Gl 999055901)State Ministry of Science and Technology Program(No.2002BA7llA0l).
文摘A cDNA, designated as rtSH3p13, was isolated from a rat testis cDNA library. It consists of 1463 bp nuclear acids,which encodes a protein of 312 amino acids and was assigned the GenBank accession number AF227439. The deduced rtSH3p13 protein is a truncated isoform of SH3p13 as a result of mRNA alternative splicing. It is mainly expressed in the rat testis, detected in spermatids at the steps 8-19 of spermiogenesis, and found around the acrosome. During postnatal development, rtSH3p13 appears on day 18 and reaches maximum on day 60. Further experimental results suggested that rtSH3p13 forms a complex with activated epidermal growth factor receptor (EGFR) and interacts with synaptojanin I. Surprisingly, similar to SH3 domain, the V region of rtSH3p13 also inhibits endocytosis in CHO cells.Our results reveal a link between an rtSH3p13-synaptojanin-clathrin complex-mediated formation of pits and the process of spermiogenesis.
基金Eleventh Five-Year Plan for National Science and Technology Major Project(Grant No.2009ZX0930-010)National Science Foundation of China(Grant No.81172915)a grant from Major New Drugs Research and Development Platform of Peking University(Grant No.2009ZX09301-010)
文摘Compound YSY-01A, a recently synthesized proteasome inhibitor, has shown potent growth-inhibitory effect on tumor cells in previous researches. However, the mechanism of its inhibitory effects, especially on cell cycle, remains largely unclear. This study aimed to evaluate the correlation between cell cycle arrest effect of YSY-01A and its anti-cancer effect, and to probe the possible molecular mechanisms for its effects on human ovarian cancer SK-OV-3 cells. The results suggested that YSY-01A significantly (P〈0.05) inhibited cellular proliferation of SK-OV-3 cells in a concentration-dependent and time-dependent manner. Furthermore, YSY-01A induced a G2/M cell cycle arrest of SK-OV-3 cells. Further investigation revealed that YSY-01A significantly (P〈0.05) changed the expression levels of a series of cell cycle related protein, such as cyclin B1, cdc2, and p-cdc2 (T14). Meanwhile, YSY-01A could inhibit the TNF-a-induced NF-kB nuclear translocation and lead to the increase of 1kBa as well as the decrease of IKK and Gadd45a In conclusion, YSY-01A showed remarkable anti-cancer activity on SK-OV-3 cells, and its molecular mechanisms were related to G2/M cell cycle arrest.
基金Eleventh Five-Year Plan for National Science and Technology Major Project (Grant No.2009ZX0930-010)National Science Foundation of China (NSFC81172915)A grant from Major New Drugs Research and Development Platform of Peking University (Grant No.2009ZX09301-010)
文摘Compound YSY-01A, a recently synthesized proteasome inhibitor, has shown potent growth-inhibitory effect on tumor cells in previous researches. However, the mechanism of its inhibitory effects, especially on cell cycle, remains largely unclear. This study aims to evaluate the correlation between cell cycle arrest effect of YSY-01A and its anti-cancer effect, and to probe the possible molecular mechanisms for its effects on human colorectal adenocarcinoma cells HT-29. The results suggested that YSY-01A significantly (P0.05) inhibited cellular proliferation of HT-29 cells in a time and concentration-dependent manner. Furthermore, YSY-01A suppressed the G 2 /M transition of HT-29 cells, whereas the mitotic inhibitor paclitaxel induced M phase accumulation. Further investigation revealed that YSY-01A significantly (P0.05) up-regulated the expression levels of a series of cell cycle related protein, such as cyclin B1, Wee1, p-cdc2 (Tyr15), p53, p21, and p27. The HT-29 cells only exhibited typical cytotoxic symptom when YSY-01A concentration reached 0.5 μM (P0.05), which was above the dose we used in the mechanism research. In conclusion, YSY-01A showed remarkable anti-cancer activity on HT-29 cells, and its molecular mechanisms are related to G 2 /M cell cycle transition arrest.