To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as hea...To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as heat source, and it is coupled to the IC engine cooling system. After various kinds of organic working media were compared, R124 was selected as the ORC working medium. According to IC engine operating conditions and coolant energy characteristics, the major parameters of ORC system were preliminary designed. Then, the effects of various parameters on cycle performance and recovery potential of coolant energy were analyzed via cycle process calculation. The results indicate that cycle efficiency is mainly influenced by the working pressure of ORC, while the maximum working pressure is limited by IC engine coolant temperature. At the same working pressure, cycle efficiency is hardly affected by both the mass flow rate and temperature of working medium. When the bottom cycle working pressure arrives at the maximum allowable value of 1.6 MPa, the fuel utilization efficiency of IC engine could be improved by 12.1%.All these demonstrate that this low-temperature ORC is a useful energy-saving technology for IC engine.展开更多
The application of hybrid vehicle is a practical technical solution to the energy shortage and the environmental pollution.The internal combustion engine(ICE)plays a key role in the development of the hybrid vehicle.B...The application of hybrid vehicle is a practical technical solution to the energy shortage and the environmental pollution.The internal combustion engine(ICE)plays a key role in the development of the hybrid vehicle.Based on the requirements of the hybrid vehicle and the characteristic of Atkinson cycle,a set of designing methods for the Atkinson cycle gasoline engine is presented through the analysis of the optimized matching for the compression ratio,valve timing and the combustion chamber.The designing method has been verified by the bench test and the results show that the fuel consumption can be improved by12%–15%with the reduction of the low speed torque by 10%,and the low fuel consumption region in the fuel map extends significantly with the rated power almost keeping constant.It may be of great reference for the development of hybrid vehicle technology in China.展开更多
基金Project(2011CB707201)supported by the National Basic Research Program of ChinaProject(51376057)supported by the National Natural Science Foundation of China
文摘To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as heat source, and it is coupled to the IC engine cooling system. After various kinds of organic working media were compared, R124 was selected as the ORC working medium. According to IC engine operating conditions and coolant energy characteristics, the major parameters of ORC system were preliminary designed. Then, the effects of various parameters on cycle performance and recovery potential of coolant energy were analyzed via cycle process calculation. The results indicate that cycle efficiency is mainly influenced by the working pressure of ORC, while the maximum working pressure is limited by IC engine coolant temperature. At the same working pressure, cycle efficiency is hardly affected by both the mass flow rate and temperature of working medium. When the bottom cycle working pressure arrives at the maximum allowable value of 1.6 MPa, the fuel utilization efficiency of IC engine could be improved by 12.1%.All these demonstrate that this low-temperature ORC is a useful energy-saving technology for IC engine.
文摘The application of hybrid vehicle is a practical technical solution to the energy shortage and the environmental pollution.The internal combustion engine(ICE)plays a key role in the development of the hybrid vehicle.Based on the requirements of the hybrid vehicle and the characteristic of Atkinson cycle,a set of designing methods for the Atkinson cycle gasoline engine is presented through the analysis of the optimized matching for the compression ratio,valve timing and the combustion chamber.The designing method has been verified by the bench test and the results show that the fuel consumption can be improved by12%–15%with the reduction of the low speed torque by 10%,and the low fuel consumption region in the fuel map extends significantly with the rated power almost keeping constant.It may be of great reference for the development of hybrid vehicle technology in China.