Thermal performance of envelopes and indoor thermal environment were technologically improved for traditional wooden vernacular dwellings of Tujia Minority in Western Hunan, China, on the premise of protecting their c...Thermal performance of envelopes and indoor thermal environment were technologically improved for traditional wooden vernacular dwellings of Tujia Minority in Western Hunan, China, on the premise of protecting their conventional styles. Thermal insulation boards and wooden boards were added to the interior side of external walls of vernacular dwellings to form two layers of air cavities, so as to gain excellent thermal performance. The indoor temperature of such dwellings after reconstruction was apparently improved compared with the data before reconstruction both in winter and summer, which verified the feasibility and the effectiveness of the reconstruction technologies proposed.展开更多
In this study, we used the Navy’s Generalized Digital Environmental Model (GDEM) climatological temperature and salinity data on a 0.5°×0.5° grid to investigate the seasonal variabilities of the southw...In this study, we used the Navy’s Generalized Digital Environmental Model (GDEM) climatological temperature and salinity data on a 0.5°×0.5° grid to investigate the seasonal variabilities of the southwest Philippines Sea (0.5°–9°N, 123.5°–136.5°) thermohaline structure and circulation. The GDEM for the area was built up on historical (1930–1997) temperature and salinity profiles. A three-dimensional estimate of the absolute geostrophic velocity field on isopycnal surface was obtained from the GDEM temperature and salinity fields using the P-vector method. The seasonal variabilities of the thermohaline structure and currents (obtained from the inverse method) such as the Mindanao Current, Mindanao Undercurrent, North Equatorial Counter Current, New Guinea Coastal Undercurrent, and dual-eddies (cyclinic Mindanao Eddy and anticyclonic Halmahera Eddy) are identified.展开更多
To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects wer...To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects were recorded at 10 min intervals for 90 min under air temperatures of 7.4,9.1,11 and 15 °C.The results show that both local skin temperatures and mean skin temperature decrease not only with the drop of ambient air temperature but also with the exposure time.Local thermal sensation and overall the thermal sensation have the similar temperature-varying and time-varying characteristics.Predicted mean vote(PMV) model cannot correctly predict the thermal sensation under non-thermal equilibrium cold environment.The correlation between local thermal sensation and local skin temperatures shows that thermal sensation is closely related to skin temperature.Skin temperature is an effective indicator of thermal sensation.A linear relationship model between overall thermal sensation and mean skin temperature,considering both ambient temperature and exposure time,was established in the non-thermal equilibrium cold environment,which makes the evaluation of thermal sensation more objective.展开更多
Adaptive models are based on the observation that there are some actions that people can and actually do take to achieve thermal comfort. Studies regarding thermal comfort conditions in economical dwellings were carri...Adaptive models are based on the observation that there are some actions that people can and actually do take to achieve thermal comfort. Studies regarding thermal comfort conditions in economical dwellings were carried out simultaneously in seven Mexican cities, corresponding to warm dry and warm humid climates. In this article, case studies of low-cost dwellings in the city of Hermosillo (in northwest Mexico), are presented and analyzed. Field surveys were carried out to obtain information about the physical characteristics of the dwellings and their occupants, as well as the indoor thermal environment. Neutral temperature was obtained from the applied survey. The high neutral temperature reveals the effect of inhabitants' adaptation mechanism to extreme climates. Occupant comfort votes as a function of indoor air temperatures were analyzed, and different characteristics such as age, size and gender were evaluated separately. The results show the variability of the neutral temperature and the tolerance to temperature changes, depending on the population's specific characteristics. In many cases where the population does not have access to artificial acclimatization devices, the neutral temperature values for specific climates and people can inform architects when choosing the most suitable thermal strategies for building design.展开更多
基金Project(51308548)supported by the National Natural Science Foundation of ChinaProject(2014M552155)supported by China Postdoctoral Science FoundationProject(2013RS4054)supported by the Science and Technology Fund of Hunan Province,China
文摘Thermal performance of envelopes and indoor thermal environment were technologically improved for traditional wooden vernacular dwellings of Tujia Minority in Western Hunan, China, on the premise of protecting their conventional styles. Thermal insulation boards and wooden boards were added to the interior side of external walls of vernacular dwellings to form two layers of air cavities, so as to gain excellent thermal performance. The indoor temperature of such dwellings after reconstruction was apparently improved compared with the data before reconstruction both in winter and summer, which verified the feasibility and the effectiveness of the reconstruction technologies proposed.
文摘In this study, we used the Navy’s Generalized Digital Environmental Model (GDEM) climatological temperature and salinity data on a 0.5°×0.5° grid to investigate the seasonal variabilities of the southwest Philippines Sea (0.5°–9°N, 123.5°–136.5°) thermohaline structure and circulation. The GDEM for the area was built up on historical (1930–1997) temperature and salinity profiles. A three-dimensional estimate of the absolute geostrophic velocity field on isopycnal surface was obtained from the GDEM temperature and salinity fields using the P-vector method. The seasonal variabilities of the thermohaline structure and currents (obtained from the inverse method) such as the Mindanao Current, Mindanao Undercurrent, North Equatorial Counter Current, New Guinea Coastal Undercurrent, and dual-eddies (cyclinic Mindanao Eddy and anticyclonic Halmahera Eddy) are identified.
基金Project(50838009) supported by the National Natural Science Foundation of China
文摘To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects were recorded at 10 min intervals for 90 min under air temperatures of 7.4,9.1,11 and 15 °C.The results show that both local skin temperatures and mean skin temperature decrease not only with the drop of ambient air temperature but also with the exposure time.Local thermal sensation and overall the thermal sensation have the similar temperature-varying and time-varying characteristics.Predicted mean vote(PMV) model cannot correctly predict the thermal sensation under non-thermal equilibrium cold environment.The correlation between local thermal sensation and local skin temperatures shows that thermal sensation is closely related to skin temperature.Skin temperature is an effective indicator of thermal sensation.A linear relationship model between overall thermal sensation and mean skin temperature,considering both ambient temperature and exposure time,was established in the non-thermal equilibrium cold environment,which makes the evaluation of thermal sensation more objective.
文摘Adaptive models are based on the observation that there are some actions that people can and actually do take to achieve thermal comfort. Studies regarding thermal comfort conditions in economical dwellings were carried out simultaneously in seven Mexican cities, corresponding to warm dry and warm humid climates. In this article, case studies of low-cost dwellings in the city of Hermosillo (in northwest Mexico), are presented and analyzed. Field surveys were carried out to obtain information about the physical characteristics of the dwellings and their occupants, as well as the indoor thermal environment. Neutral temperature was obtained from the applied survey. The high neutral temperature reveals the effect of inhabitants' adaptation mechanism to extreme climates. Occupant comfort votes as a function of indoor air temperatures were analyzed, and different characteristics such as age, size and gender were evaluated separately. The results show the variability of the neutral temperature and the tolerance to temperature changes, depending on the population's specific characteristics. In many cases where the population does not have access to artificial acclimatization devices, the neutral temperature values for specific climates and people can inform architects when choosing the most suitable thermal strategies for building design.