In order to measure the position and orientation of in-vivo medical micro-devices without the line-of- sight constraints, a wireless magnetic sensor is developed for an electromagnetic localization method. In the elec...In order to measure the position and orientation of in-vivo medical micro-devices without the line-of- sight constraints, a wireless magnetic sensor is developed for an electromagnetic localization method. In the electromagnetic localization system, the wireless magnetic sensor is embedded in the micro-devices to measure alternating magnetic signals. The wireless magnetic sensor is composed of an induction coil, a signal processor, a radio frequency (R.F) transmitter, a power manager and batteries. Based on the principle of electromagnetic induction, the induction coil converts the alternating magnetic signals into electrical signals. Via the RF transmitter, the useful data am wirelessly sent outside the body. According to the relation between the magnetic signals and the location, the position and orientation of the micro-devices can be calculated. The experiments demonstrate the feasibility of localizing in-vivo medical micro-devices with the wireless magnetic sensor. The novel localization system is accurate and robust.展开更多
The mositure content inside the hermetic package of semiconductor device has been quantitatively measured by using in-site sensor technique and computer-aided-test system.The principle and apparatus for measurement ar...The mositure content inside the hermetic package of semiconductor device has been quantitatively measured by using in-site sensor technique and computer-aided-test system.The principle and apparatus for measurement are introduced.The results show good repeatability and consistency.This technology can be used as a standard test for controlling the moisture content within semiconductor device package.展开更多
The skin is the largest organ of the body and is a potential route of exposure to sunscreens and cosmetics containing nanoparticles; however, the permeability of the skin to these nanoparticles is currently unknown. I...The skin is the largest organ of the body and is a potential route of exposure to sunscreens and cosmetics containing nanoparticles; however, the permeability of the skin to these nanoparticles is currently unknown. In this paper, we studied the transderreal delivery capacity through mouse skin of water-soluble CdSeS quantum dots (QDs) and the deposition of these QDs in the body. QD solution was coated onto the dorsal hairless skin of male ICR mice. Fluorescence microscopy and transmission electron microscopy (TEM) were used to observe the distribution of QDs in the skin and organs, and inductively coupled plasma-mass spectrometry (ICP-MS) was used to measure the 111Cd content to indicate the concentration of QDs in plasma and organs. Experimental results indicate that QDs can penetrate into the dermal layer and are limited to the uppermost stratum corneum layers and the hair follicles. Through blood circulation, QDs deposit mostly in liver and kidney and are difficult to clear, 111Cd concentration was greater than 14 ng g-1 in kidney after 120 h after 0.32 nmol QDs was applied to a mouse. These results suggest that QDs have in vivo transdermal delivery capacity through mouse skin and are harmful to the liver and kidney.展开更多
We collected eleven bench samples of No. 6 coal from the Heidaigou Surface Mine, Jungar Coalfield, Inner Mongolia, China, and four samples from the affiliated coal preparation plant. Based on these samples, we used in...We collected eleven bench samples of No. 6 coal from the Heidaigou Surface Mine, Jungar Coalfield, Inner Mongolia, China, and four samples from the affiliated coal preparation plant. Based on these samples, we used inductively coupled-plasma mass spectroscopy, X-ray diffraction, scanning electron microscope with an energy-dispersive X-ray spectrometer techniques, and borehole exploration data, to investigate the distribution, occurrence and enrichment causes of gallium (Ga) in the coals. Our results show: (1) Gallium is significantly enriched in the coal seams from the study area, with an average content of 18.8-26.0 ppm. Gallium is distributed heterogeneously in the coals, and reaches ore-forming scales only in No. 6 coal of Heidaigou Surface Mine, not in the other mining districts of Jungar Coalfield. (2) On the horizontal plane, Ga is enriched in the main minable coals from the northern and middle part of the coalfield. In the vertical profile, Ga content in the coal seams is higher at the base of Taiyuan Formation (Nos. 8 and 9) and Shanxi Formation (Nos. 3 and 4) than at the top of the Taiyuan Formation. Within the identical coal seam, Ga content is higher in the benches near the roof and floor than in the middle section. (3) Gallium in the coals is associated mainly with kaolinite and boehmite. Additionally, Ga may be adsorbed to some extent by humic acid, resulting in a high level in weathering coal. (4) Geological factors affect Ga enrichment in coal, such as the prop- erty of parent rocks in the source area, the sedimentary environment, organic matter, structure, and past magmatic hydrothermal activity. Especially, Ga content in parent rocks plays a leading role. (5) The mobility and precipitation of trace elements like Ga are controlled principally by the geochemical behavior of the major element A1. Terrestrial and transgressive environments can cause the precipitation of bauxite, whereas marine-continental depositional environments may cause the separation of Ga from A1. In addition, Ga may migrate in the form of gas tively enriched in high-volatile coal. and may be affected by the ground temperature. Thus, it is relatively enriched in high-volatile coal.展开更多
基金Sup.ported by the High TechnologyResearch and Development Programme of China (No.2006AA04Z368), the National Natural Science Foundation of China (No. 30900320, 30570485) and Innovation Program of Shanghai Municipal Education Commission (No. 10YZ93).
文摘In order to measure the position and orientation of in-vivo medical micro-devices without the line-of- sight constraints, a wireless magnetic sensor is developed for an electromagnetic localization method. In the electromagnetic localization system, the wireless magnetic sensor is embedded in the micro-devices to measure alternating magnetic signals. The wireless magnetic sensor is composed of an induction coil, a signal processor, a radio frequency (R.F) transmitter, a power manager and batteries. Based on the principle of electromagnetic induction, the induction coil converts the alternating magnetic signals into electrical signals. Via the RF transmitter, the useful data am wirelessly sent outside the body. According to the relation between the magnetic signals and the location, the position and orientation of the micro-devices can be calculated. The experiments demonstrate the feasibility of localizing in-vivo medical micro-devices with the wireless magnetic sensor. The novel localization system is accurate and robust.
文摘The mositure content inside the hermetic package of semiconductor device has been quantitatively measured by using in-site sensor technique and computer-aided-test system.The principle and apparatus for measurement are introduced.The results show good repeatability and consistency.This technology can be used as a standard test for controlling the moisture content within semiconductor device package.
基金supported by the Medical College of Chinese People’s Armed Police Force in 2010 (WYZ201003)
文摘The skin is the largest organ of the body and is a potential route of exposure to sunscreens and cosmetics containing nanoparticles; however, the permeability of the skin to these nanoparticles is currently unknown. In this paper, we studied the transderreal delivery capacity through mouse skin of water-soluble CdSeS quantum dots (QDs) and the deposition of these QDs in the body. QD solution was coated onto the dorsal hairless skin of male ICR mice. Fluorescence microscopy and transmission electron microscopy (TEM) were used to observe the distribution of QDs in the skin and organs, and inductively coupled plasma-mass spectrometry (ICP-MS) was used to measure the 111Cd content to indicate the concentration of QDs in plasma and organs. Experimental results indicate that QDs can penetrate into the dermal layer and are limited to the uppermost stratum corneum layers and the hair follicles. Through blood circulation, QDs deposit mostly in liver and kidney and are difficult to clear, 111Cd concentration was greater than 14 ng g-1 in kidney after 120 h after 0.32 nmol QDs was applied to a mouse. These results suggest that QDs have in vivo transdermal delivery capacity through mouse skin and are harmful to the liver and kidney.
基金supported by National Natural Science Foundation of China (Grant Nos. 40772102 and 40730422)Program for New Century Excellent Talents in University (Grant No. NCET-08-0839)+2 种基金National Key Basic Research and Development Program of China (Grant No. 2007CB209400)the Fundamental Research Funds for the Central Universities (Grant No. 2010LKDZ02)Sci-Tech Project "Evaluation of coal resources in first batch national planning mining areas" of the Ministry of Land and Resources
文摘We collected eleven bench samples of No. 6 coal from the Heidaigou Surface Mine, Jungar Coalfield, Inner Mongolia, China, and four samples from the affiliated coal preparation plant. Based on these samples, we used inductively coupled-plasma mass spectroscopy, X-ray diffraction, scanning electron microscope with an energy-dispersive X-ray spectrometer techniques, and borehole exploration data, to investigate the distribution, occurrence and enrichment causes of gallium (Ga) in the coals. Our results show: (1) Gallium is significantly enriched in the coal seams from the study area, with an average content of 18.8-26.0 ppm. Gallium is distributed heterogeneously in the coals, and reaches ore-forming scales only in No. 6 coal of Heidaigou Surface Mine, not in the other mining districts of Jungar Coalfield. (2) On the horizontal plane, Ga is enriched in the main minable coals from the northern and middle part of the coalfield. In the vertical profile, Ga content in the coal seams is higher at the base of Taiyuan Formation (Nos. 8 and 9) and Shanxi Formation (Nos. 3 and 4) than at the top of the Taiyuan Formation. Within the identical coal seam, Ga content is higher in the benches near the roof and floor than in the middle section. (3) Gallium in the coals is associated mainly with kaolinite and boehmite. Additionally, Ga may be adsorbed to some extent by humic acid, resulting in a high level in weathering coal. (4) Geological factors affect Ga enrichment in coal, such as the prop- erty of parent rocks in the source area, the sedimentary environment, organic matter, structure, and past magmatic hydrothermal activity. Especially, Ga content in parent rocks plays a leading role. (5) The mobility and precipitation of trace elements like Ga are controlled principally by the geochemical behavior of the major element A1. Terrestrial and transgressive environments can cause the precipitation of bauxite, whereas marine-continental depositional environments may cause the separation of Ga from A1. In addition, Ga may migrate in the form of gas tively enriched in high-volatile coal. and may be affected by the ground temperature. Thus, it is relatively enriched in high-volatile coal.