针对铣刀磨损状态监测中信号噪声大、监测效率低等问题,提出了一种基于能量权重法的变分模态分解(VMD)与黑寡妇(BWO)-支持向量机(SVM)的铣刀磨损状态监测方法。首先,运用VMD将铣削时产生的振动信号分解成若干固有模态函数(IMF)分量,并...针对铣刀磨损状态监测中信号噪声大、监测效率低等问题,提出了一种基于能量权重法的变分模态分解(VMD)与黑寡妇(BWO)-支持向量机(SVM)的铣刀磨损状态监测方法。首先,运用VMD将铣削时产生的振动信号分解成若干固有模态函数(IMF)分量,并通过能量加权合成峭度指标自适应提取出了包含磨损状态特征的IMF分量,并进行了信号重构,对重构信号进行了特征提取;然后,利用BWO算法优化SVM的参数,构建了BWO-SVM铣刀磨损状态监测模型;最后,为了验证上述方法的有效性,以某公司真实加工现场的PHM Society 2010铣刀全寿命周期的振动数据进行了实验,并且又通过实际的工程案例对此进行了验证。研究结果表明:通过所提方法自适应提取有效分量并进行信号重构后,降噪效果明显,并通过与遗传算法(GA)和粒子群算法(PSO)优化的SVM相比,经过BWO优化的SVM的训练时间缩短至25.142 s,同时监测精度达到97.246%;采用该方法对铣刀磨损状态进行监测,能够获得更快的识别速度与更高的准确性,提高了铣刀磨损状态监测的效率。展开更多
针对滚动轴承(rolling element bearings,REBs)早期故障振动信号冲击成分微弱,受噪声影响故障特征难以提取,提出了基于自相关和Teager能量算子增强的滚动轴承微弱故障特征提取法。利用自相关计算和经验模态分解(empirical mode decompos...针对滚动轴承(rolling element bearings,REBs)早期故障振动信号冲击成分微弱,受噪声影响故障特征难以提取,提出了基于自相关和Teager能量算子增强的滚动轴承微弱故障特征提取法。利用自相关计算和经验模态分解(empirical mode decomposition,EMD),分别实现轴承振动信号整个频带随机噪声和低频噪声的抑制,突出故障冲击周期。同时,提出基于内禀模态函数(intrinsic mode function,IMF)能量比加权的互相关系数-峭度指标用于筛选最优IMF进行信号重构,强化重构信号中的故障信息。对重构信号作用Teager能量算子(Teager energy operator,TEO),得到故障冲击特征增强的瞬时能量序列,通过功率谱分析提取轴承故障特征频率。内圈故障仿真信号和滚动体故障实测信号分析表明,该方法能够有效抑制轴承振动信号噪声,对早期故障的微弱特征有显著增强作用。展开更多
文摘针对铣刀磨损状态监测中信号噪声大、监测效率低等问题,提出了一种基于能量权重法的变分模态分解(VMD)与黑寡妇(BWO)-支持向量机(SVM)的铣刀磨损状态监测方法。首先,运用VMD将铣削时产生的振动信号分解成若干固有模态函数(IMF)分量,并通过能量加权合成峭度指标自适应提取出了包含磨损状态特征的IMF分量,并进行了信号重构,对重构信号进行了特征提取;然后,利用BWO算法优化SVM的参数,构建了BWO-SVM铣刀磨损状态监测模型;最后,为了验证上述方法的有效性,以某公司真实加工现场的PHM Society 2010铣刀全寿命周期的振动数据进行了实验,并且又通过实际的工程案例对此进行了验证。研究结果表明:通过所提方法自适应提取有效分量并进行信号重构后,降噪效果明显,并通过与遗传算法(GA)和粒子群算法(PSO)优化的SVM相比,经过BWO优化的SVM的训练时间缩短至25.142 s,同时监测精度达到97.246%;采用该方法对铣刀磨损状态进行监测,能够获得更快的识别速度与更高的准确性,提高了铣刀磨损状态监测的效率。
文摘针对滚动轴承(rolling element bearings,REBs)早期故障振动信号冲击成分微弱,受噪声影响故障特征难以提取,提出了基于自相关和Teager能量算子增强的滚动轴承微弱故障特征提取法。利用自相关计算和经验模态分解(empirical mode decomposition,EMD),分别实现轴承振动信号整个频带随机噪声和低频噪声的抑制,突出故障冲击周期。同时,提出基于内禀模态函数(intrinsic mode function,IMF)能量比加权的互相关系数-峭度指标用于筛选最优IMF进行信号重构,强化重构信号中的故障信息。对重构信号作用Teager能量算子(Teager energy operator,TEO),得到故障冲击特征增强的瞬时能量序列,通过功率谱分析提取轴承故障特征频率。内圈故障仿真信号和滚动体故障实测信号分析表明,该方法能够有效抑制轴承振动信号噪声,对早期故障的微弱特征有显著增强作用。