期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
由轮生成的Cayley图的广义3-连通度
1
作者 张燕 马木提·阿依古丽 《四川师范大学学报(自然科学版)》 CAS 北大核心 2020年第3期345-349,共5页
令S?V(G),κG(S)表示图G中内部不交的S-树T1,T2,…,Tr的最大数目r,使得对任意i,j∈{1,2,…,r}且i≠j,有V(Ti)∩V(Tj)=S,E(Ti)∩E(Tj)=?.定义κk(G)=min{κG(S)|S?V(G),且|S|=k}为图G的广义k-连通度,其中k是整数,且2≤k≤n.令Sym(n)是在{... 令S?V(G),κG(S)表示图G中内部不交的S-树T1,T2,…,Tr的最大数目r,使得对任意i,j∈{1,2,…,r}且i≠j,有V(Ti)∩V(Tj)=S,E(Ti)∩E(Tj)=?.定义κk(G)=min{κG(S)|S?V(G),且|S|=k}为图G的广义k-连通度,其中k是整数,且2≤k≤n.令Sym(n)是在{1,2,…,n}上的对称群,T是Sym(n)的对换集合.G(T)表示点集是{1,2,…,n},边集是{ij|(ij)∈T}的图.若G(T)是一个轮图,则将Cayley图Cay(Sym(n),T)简记为WGn.主要研究由轮生成的Cayley图WGn的广义3-连通度,并证明κ3(WGn)=2n-3,其中n≥4. 展开更多
关键词 CAYLEY图 广义k-连通度 内部不交的s-树
下载PDF
完全对换图的广义3-连通度(英文)
2
作者 张燕 阿依古丽.马木提 《曲阜师范大学学报(自然科学版)》 CAS 2019年第1期1-6,共6页
令S■V(G)κ.G(S)表示图G中内部不交的S-树T1,T2,…,Tr的最大数目r,使得对任意i,j∈{1,2,…,r}且i≠j,有V(Ti)∩V(Tj)=S,E(Ti)∩E(Tj)=.定义κk(G)=min{κG(S)|S■V(G),且|S|=k}为图G的广义k-连通度,其中k是整数,且2≤k≤n.完全对换... 令S■V(G)κ.G(S)表示图G中内部不交的S-树T1,T2,…,Tr的最大数目r,使得对任意i,j∈{1,2,…,r}且i≠j,有V(Ti)∩V(Tj)=S,E(Ti)∩E(Tj)=.定义κk(G)=min{κG(S)|S■V(G),且|S|=k}为图G的广义k-连通度,其中k是整数,且2≤k≤n.完全对换图在网络中是重要的一类Cayley图.该文证明了n-维完全对换图CTn的广义3-连通度是n(n-1)/2-1,也就是说,对于CTn的任意三个点,存在n(n-1)/2-1个连接它们的内部不交的树. 展开更多
关键词 完全对换图 广义连通度 内部不交的s-树 邻点
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部