期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The molecular mechanism of embryonic stem cell pluripotency maintenance 被引量:1
1
作者 WANG Qingzhong LIU Yixun HAN Chunsheng 《Chinese Science Bulletin》 SCIE EI CAS 2005年第19期2121-2131,共11页
In vitro cultured embryonic stem (ES) cells are derived from the inner cell mass (ICM) of pre-implantation embryos, and are capable of giving rise to all cell and tissue types of the three germ layers upon being injec... In vitro cultured embryonic stem (ES) cells are derived from the inner cell mass (ICM) of pre-implantation embryos, and are capable of giving rise to all cell and tissue types of the three germ layers upon being injected back into blastocysts. These cells are therefore said to possess pluripo-tency that can be maintained infinitely in culture under op-timal conditions. Such pluripotency maintenance is believed to be due to the symmetrical cleavage of the cells in an un-differentiated state. The pluripotency of ES cells is the basis for their various practical and potential applications. ES cells can be used as donor cells to generate knockout or transgenic animals, as in vitro models of mammalian development, and as cell resources for cell therapy in regenerative medicine. The further success in these applications, particularly in the last two, is dependent on the establishment of a culture sys-tem with components in the medium clearly defined and the subsequent procedures for controlled differentiation of the cells into specific lineages. In turn, elucidating the molecular mechanism for pluripotency maintenance of ES cells is the prerequisite. This paper summarizes the recent progresses in this area, focusing mainly on the LIF/STAT3, BMPs/Smads, canonical Wnt, TGFβ/activin/nodal, PI3K and FGF signaling pathways and the genes such as oct4, nanog that are crucial in ES cell pluripotency maintenance. The regulatory systems of pluripotency maintenance in both mouse and human ES cells are also discussed. We believe that the cross-talkings between these signaling pathways, as well as the regulatory system underlying pluripotency maintenance will be the main focus in the area of ES cell researches in the future. 展开更多
关键词 胚胎干细胞 内部细胞聚集 无限扩展 微生物层 对称分裂
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部