In this paper, the characteristics of a pressure wave propagating against two parallel subsonic streams in a constant-area straight duct are investigated by one-dimensional analysis, two-dimensional numerical simulati...In this paper, the characteristics of a pressure wave propagating against two parallel subsonic streams in a constant-area straight duct are investigated by one-dimensional analysis, two-dimensional numerical simulation, and experiments. Computations have been carried out by the two-dimensional Euler Equations using the Chakravarthy-Osher-type TVD scheme. Optical observations by the schlieren method as well as wall pressure measurements have been performed to clarify both the structure and the propagation velocity of pressure waves. The results show that the pressure wave propagating against the streams changes into a bifurcated pressure wave and the bifurcation occurs in the low speed streams. It is also found that the propagation velocity of the pressure wave obtained by the analysis and computation agrees well with the present experimental data.展开更多
文摘In this paper, the characteristics of a pressure wave propagating against two parallel subsonic streams in a constant-area straight duct are investigated by one-dimensional analysis, two-dimensional numerical simulation, and experiments. Computations have been carried out by the two-dimensional Euler Equations using the Chakravarthy-Osher-type TVD scheme. Optical observations by the schlieren method as well as wall pressure measurements have been performed to clarify both the structure and the propagation velocity of pressure waves. The results show that the pressure wave propagating against the streams changes into a bifurcated pressure wave and the bifurcation occurs in the low speed streams. It is also found that the propagation velocity of the pressure wave obtained by the analysis and computation agrees well with the present experimental data.