Hyperthermia has been considered as a promising healing treatment in bone regeneration. We designed a tissue engineering hydrogel based on magnetic nanoparticles to explore the characteristics of hyperthermia for oste...Hyperthermia has been considered as a promising healing treatment in bone regeneration. We designed a tissue engineering hydrogel based on magnetic nanoparticles to explore the characteristics of hyperthermia for osteogenic regeneration. This nanocomposite hydrogel was successfully fabricated by incorporating magnetic Fe_3O_4 nanoparticles into chitosan/polyethylene glycol(PEG) hydrogel, which showed excellent biocompatibility and were able to easily achieve increasing temperatures under an alternative magnetic field(AMF). With uniformly dispersed nanoparticles, the composite hydrogel resulted in high viability of mesenchymal stem cells(MSCs), and the elevated temperature contributed to the highest osteogenic differentiation ability compared with direct heat treatment applied under equal temperatures. Therefore, the nanoheat stimulation method using the magnetic nanocomposite hydrogel under an AMF may be considered as an alternative candidate in bone tissue engineering regenerative applications.展开更多
基金financial support from the National Natural Science Foundation of China (81671829)the 111 Project (B17026)
文摘Hyperthermia has been considered as a promising healing treatment in bone regeneration. We designed a tissue engineering hydrogel based on magnetic nanoparticles to explore the characteristics of hyperthermia for osteogenic regeneration. This nanocomposite hydrogel was successfully fabricated by incorporating magnetic Fe_3O_4 nanoparticles into chitosan/polyethylene glycol(PEG) hydrogel, which showed excellent biocompatibility and were able to easily achieve increasing temperatures under an alternative magnetic field(AMF). With uniformly dispersed nanoparticles, the composite hydrogel resulted in high viability of mesenchymal stem cells(MSCs), and the elevated temperature contributed to the highest osteogenic differentiation ability compared with direct heat treatment applied under equal temperatures. Therefore, the nanoheat stimulation method using the magnetic nanocomposite hydrogel under an AMF may be considered as an alternative candidate in bone tissue engineering regenerative applications.