The sediment resuspension mechanisms in Sungo Bay, a large-scale aquaculture area in north China, were investigated by analysing data collected during several periods from 2005 to 2006. Nortek 6M ADV current meter and...The sediment resuspension mechanisms in Sungo Bay, a large-scale aquaculture area in north China, were investigated by analysing data collected during several periods from 2005 to 2006. Nortek 6M ADV current meter and YSI6600 were used to collect the field data on current speed, current direction and water turbidities 1 m above the bottom. Based on the collected field data, it could be found that wind-waves and currents were the main driving force for sediment resuspension. The correlation between suspended sediment concentration (SSC) and turbidity (NTU) is SSC = 15.908 x In (NTU) + 7.0888 (n = 33, R2 = 0.7209). Taking the key factor (angle 0) into account, the combination effect between wave and current were expressed. Results showed that the combined shear stress (row) of wave stress (re) and current stress (rw) could be calculated by row = rc + 2√ rcrw sin θ + rw sin^2 θ. The critical shear stress for sediment resuspension was about 0.059 N/m^2. The correlation between suspended sediment concentration and critical shear stress could be expressed by rcw = 238.06 SSC + 25.215 (n = 25, R^2 = 0.7298).展开更多
基金Acknowledgments This work was supported by the National Basic Research Program of China (Grant No. 2011 CB409805), the National Science and Technology Planning Project of China (Grant No. 2011BAD13B05), the National Natural Science Foundation of China (Grant No. 41006074) and theSpecial Project of State Oceanic Administration (Grant No. DOMEP (MEA)-02). The authors were grateful to Mr. Zhang Huayue of Xunshan Fishery Group for his cooperation along this work and also to the very constructive comments by several reviewers.
文摘The sediment resuspension mechanisms in Sungo Bay, a large-scale aquaculture area in north China, were investigated by analysing data collected during several periods from 2005 to 2006. Nortek 6M ADV current meter and YSI6600 were used to collect the field data on current speed, current direction and water turbidities 1 m above the bottom. Based on the collected field data, it could be found that wind-waves and currents were the main driving force for sediment resuspension. The correlation between suspended sediment concentration (SSC) and turbidity (NTU) is SSC = 15.908 x In (NTU) + 7.0888 (n = 33, R2 = 0.7209). Taking the key factor (angle 0) into account, the combination effect between wave and current were expressed. Results showed that the combined shear stress (row) of wave stress (re) and current stress (rw) could be calculated by row = rc + 2√ rcrw sin θ + rw sin^2 θ. The critical shear stress for sediment resuspension was about 0.059 N/m^2. The correlation between suspended sediment concentration and critical shear stress could be expressed by rcw = 238.06 SSC + 25.215 (n = 25, R^2 = 0.7298).