期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于再权重稀疏和正交约束非负矩阵分解的高光谱图像解混
被引量:
1
1
作者
董桓宇
陈善学
陈雯雯
《计算机应用与软件》
北大核心
2022年第7期222-226,共5页
针对由于非负矩阵分解模型的非凸性和噪声,非负矩阵分解方法容易陷入局部最优解的问题,提出一种再权重稀疏和正交约束非负矩阵分解算法(Reweight Sparse and Orthogonal Nonnegative Matrix Factorization, RONMF)。RSNMF是一种稀疏增...
针对由于非负矩阵分解模型的非凸性和噪声,非负矩阵分解方法容易陷入局部最优解的问题,提出一种再权重稀疏和正交约束非负矩阵分解算法(Reweight Sparse and Orthogonal Nonnegative Matrix Factorization, RONMF)。RSNMF是一种稀疏增强的算法,充分体现了高光谱图像解混的地物丰度稀疏性,但也因此使得光谱近似的地物容易混淆。RONMF在再权重稀疏非负矩阵分解的基础上,引入正交非负矩阵分解(Orthogonal Nonnegative Matrix Factorization, ONMF),增强端元光谱的独立性,在再权重稀疏算法基础上进一步优化,以达到更好的解混效果。实验也证实了该算法的优越性能,RONMF算法对土壤与路这种光谱相近的端元解混性能与SONMF相近,继承SONMF有效保护端元独立性的特性,对树和水这种丰度稀疏特性较强端元的解混性能,极大程度地保留了再权重稀疏算法的稀疏性增强能力。
展开更多
关键词
高光谱图像解混
非负矩阵分解
再权重稀疏
正交
下载PDF
职称材料
题名
基于再权重稀疏和正交约束非负矩阵分解的高光谱图像解混
被引量:
1
1
作者
董桓宇
陈善学
陈雯雯
机构
重庆邮电大学通信与信息工程学院
重庆邮电大学移动通信技术重庆市重点实验室
出处
《计算机应用与软件》
北大核心
2022年第7期222-226,共5页
基金
国家自然科学基金项目(61271260)
重庆市教委科学技术研究项目(KJ1400416)。
文摘
针对由于非负矩阵分解模型的非凸性和噪声,非负矩阵分解方法容易陷入局部最优解的问题,提出一种再权重稀疏和正交约束非负矩阵分解算法(Reweight Sparse and Orthogonal Nonnegative Matrix Factorization, RONMF)。RSNMF是一种稀疏增强的算法,充分体现了高光谱图像解混的地物丰度稀疏性,但也因此使得光谱近似的地物容易混淆。RONMF在再权重稀疏非负矩阵分解的基础上,引入正交非负矩阵分解(Orthogonal Nonnegative Matrix Factorization, ONMF),增强端元光谱的独立性,在再权重稀疏算法基础上进一步优化,以达到更好的解混效果。实验也证实了该算法的优越性能,RONMF算法对土壤与路这种光谱相近的端元解混性能与SONMF相近,继承SONMF有效保护端元独立性的特性,对树和水这种丰度稀疏特性较强端元的解混性能,极大程度地保留了再权重稀疏算法的稀疏性增强能力。
关键词
高光谱图像解混
非负矩阵分解
再权重稀疏
正交
Keywords
Hyperspectral unmixing
Nonnegative Matrix Factorization
Reweight sparse
Orthogonal
分类号
TP751 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于再权重稀疏和正交约束非负矩阵分解的高光谱图像解混
董桓宇
陈善学
陈雯雯
《计算机应用与软件》
北大核心
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部