End stage liver disease (ESLD) is a health problem worldwide. Liver transplantation is currently the only effective therapy, but its many drawbacks include a shortage of donors, operative damage, risk of rejection and...End stage liver disease (ESLD) is a health problem worldwide. Liver transplantation is currently the only effective therapy, but its many drawbacks include a shortage of donors, operative damage, risk of rejection and in some cases recidivism of the pre-transplant disease. These factors account for the recent growing interest in regenerative medicine. Experiments have sought to identify an optimal source of stem cells, sufficient to generate large amounts of hepatocytes to be used in bioartificial livers or injected in vivo to repair the diseased organ. This update aims to give non-stem cell specialists an overview of the results obtained to date in this fascinating field of biomedical research.展开更多
Kidney regeneration is a challenging but promisingstrategy aimed at reducing the progression to end-stagerenal disease (ESRD) and improving the quality of life of patients with ESRD. Adult stem cells are multipotent...Kidney regeneration is a challenging but promisingstrategy aimed at reducing the progression to end-stagerenal disease (ESRD) and improving the quality of life of patients with ESRD. Adult stem cells are multipotent stem cells that reside in various tissues, such as bone marrow and adipose tissue. Although intensive studies to isolate kidney stem/progenitor cells from the adult kidney have been performed, it remains controversial whether stem/progenitor cells actually exist in the mammalian adult kidney. The effcacy of mesenchymal stem cells (MSCs) in the recovery of kidney function has been demonstrated in animal nephropathy models, such as acute tubular injury, glomerulonephritis, renal artery stenosis, and remnant kidney. However, their benefcial effects seem to be mediated largely via their paracrine effects rather than their direct differentiation into renal parenchymal cells. MSCs not only secrete bioactive molecules directly into the circulation, but they also release various molecules, such as proteins, mRNA, and microRNA, in membrane-covered vesicles. A detailed analysis of these molecules and an exploration of the optimal combination of these molecules will enable the treatment of patients with kidney disease without using stem cells. Another option for the treatment of patients with kidney disease using adult somatic cells is a direct/indirect reprogramming of adult somatic cells into kidney stem/progenitor cells. Although many hurdles still need to be overcome, this strategy will enable bona fde kidney regeneration rather than kidney repair using remnant renal parenchymal cells.展开更多
Researches in the field of the myocardial ischemia-reperfusion injury are attracting the attentions of clinicians for the treatments that protect cardiac muscle cells from being injured can not only help the patients ...Researches in the field of the myocardial ischemia-reperfusion injury are attracting the attentions of clinicians for the treatments that protect cardiac muscle cells from being injured can not only help the patients get recovery but also keep them in health. By clearing the free radicals and reducing calcium overload of myocardial cell, treatments with Danhong Injection will help myocardial cells survive from inflammatory reactions which are triggered by ischemia reperfusion so as that endothelial function will be improved and myocardial cell apoptosis will be inhibited. In all, Danhong Injection is an ideal medicine for protecting myocardial cell against ischemia reperfusion injury.展开更多
基金The European Association for the Study of the Liver(EASL) Sheila Sherlock Post-Doc Fellowship and by"Ordine dei Medici Chirurghi ed Odontoiatri di Bologna"(SL)
文摘End stage liver disease (ESLD) is a health problem worldwide. Liver transplantation is currently the only effective therapy, but its many drawbacks include a shortage of donors, operative damage, risk of rejection and in some cases recidivism of the pre-transplant disease. These factors account for the recent growing interest in regenerative medicine. Experiments have sought to identify an optimal source of stem cells, sufficient to generate large amounts of hepatocytes to be used in bioartificial livers or injected in vivo to repair the diseased organ. This update aims to give non-stem cell specialists an overview of the results obtained to date in this fascinating field of biomedical research.
文摘Kidney regeneration is a challenging but promisingstrategy aimed at reducing the progression to end-stagerenal disease (ESRD) and improving the quality of life of patients with ESRD. Adult stem cells are multipotent stem cells that reside in various tissues, such as bone marrow and adipose tissue. Although intensive studies to isolate kidney stem/progenitor cells from the adult kidney have been performed, it remains controversial whether stem/progenitor cells actually exist in the mammalian adult kidney. The effcacy of mesenchymal stem cells (MSCs) in the recovery of kidney function has been demonstrated in animal nephropathy models, such as acute tubular injury, glomerulonephritis, renal artery stenosis, and remnant kidney. However, their benefcial effects seem to be mediated largely via their paracrine effects rather than their direct differentiation into renal parenchymal cells. MSCs not only secrete bioactive molecules directly into the circulation, but they also release various molecules, such as proteins, mRNA, and microRNA, in membrane-covered vesicles. A detailed analysis of these molecules and an exploration of the optimal combination of these molecules will enable the treatment of patients with kidney disease without using stem cells. Another option for the treatment of patients with kidney disease using adult somatic cells is a direct/indirect reprogramming of adult somatic cells into kidney stem/progenitor cells. Although many hurdles still need to be overcome, this strategy will enable bona fde kidney regeneration rather than kidney repair using remnant renal parenchymal cells.
文摘Researches in the field of the myocardial ischemia-reperfusion injury are attracting the attentions of clinicians for the treatments that protect cardiac muscle cells from being injured can not only help the patients get recovery but also keep them in health. By clearing the free radicals and reducing calcium overload of myocardial cell, treatments with Danhong Injection will help myocardial cells survive from inflammatory reactions which are triggered by ischemia reperfusion so as that endothelial function will be improved and myocardial cell apoptosis will be inhibited. In all, Danhong Injection is an ideal medicine for protecting myocardial cell against ischemia reperfusion injury.