A novel regenerative braking algorithm based on regenerative torque optimization with emulate engine compression braking (EECB) was proposed to make effective and maximum use of brake energy in order to improve fuel e...A novel regenerative braking algorithm based on regenerative torque optimization with emulate engine compression braking (EECB) was proposed to make effective and maximum use of brake energy in order to improve fuel economy.The actual brake oil pressure of driving wheel which is reduced by the amount of the regenerative braking force is supplied from the electronic hydraulic brake system.Regenerative torque optimization maximizes the actual regenerative power recuperation by energy storage component,and EECB is a useful extended type of regenerative braking.The simulation results show that actual regenerative power recuperation for the novel regenerative braking algorithm is more than using conventional one,and life-span of brake disks is prolonged for the novel algorithm.展开更多
The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on i...The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on iodine adsorption value and regeneration yield of activated carbon was investigated. The response surface methodology (RSM) technique was utilized to optimize the process conditions. The optimum conditions for the preparation of activated carbon are identified to be activation temperature of 831 ℃, activation duration of 40 min and steam flow rate of 2.67 mL/min. The optimum conditions result in an activated carbon with an iodine number of 1048 mg/g and a yield of 40%, and the BET surface area evaluated using nitrogen adsorption isotherm is 1493 m2/g, with total pore volume of 1.242 cm3/g. And the pore structure of activated carbon regenerated is mainly composed of micropores and a small amount of mesopores.展开更多
A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which i...A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which is aimed at efficient operation of the overall system considering the operational characteristic of the components and taking the curves of engine, hydraulic pump/motor and hydrau- lic pump as the main design basis; regenerative control strategy which makes regenerative brake sys- tem and frictional brake system work harmoniously is designed to raise recovery rate of regenerative brake energy. System dynamic modeling and simulation results show that the energy control strategy designed here is able to adapt system to changes of working condition and switch the operating mode reasonably. The regenerative braking control strategy is effective in raising the utilization of energy and improving fuel economy.展开更多
The purpose of this study is to develop low cost adsorbing materials to remove the heavy metals from waste waters. The outer covering of coconut, coconut shell, is the most abundant in the countries of its plantation ...The purpose of this study is to develop low cost adsorbing materials to remove the heavy metals from waste waters. The outer covering of coconut, coconut shell, is the most abundant in the countries of its plantation and enormous use. Utilization of agricultural waste (coconut shell) in the production of activated carbon potentially leads to produce a highly effective adsorbent generated from low cost raw materials that are available in huge quantity as renewable resources. At present coconut shell is not in use as valuable entity due to which disposal and ultimate environmental problems are faced. In this study coconut shells were impregnated with phosphoric acid and chemically activated at 450 C. The potential to remove chromium (VI) from aqueous solution by using activated coconut shells was investigated by batch experiment. The various sorption parameters i.e pH, sorbent dose, sorbate concentration, agitation time and agitation speed were optimized. The sorption of Cr (VI) onto activated carbon, developed from coconut shell, at pH 2 was achieved 81.25%. The best optimum conditions were obtained when 0.75 gm of sorbent was agitated at 150 rpm with 60 mg/L of sorbate for 40 min. Activated coconut shells has potential to be a good resource material for effective removal of chromium (VI) of low concentration from wastewater.展开更多
In recent years, against a background of an environmental problem and resource problem, the introduction of RES (renewable energy source) such as wind power generation and PV (photovoltaic generation), EV (electr...In recent years, against a background of an environmental problem and resource problem, the introduction of RES (renewable energy source) such as wind power generation and PV (photovoltaic generation), EV (electric vehicle), and PHEV (Plug-in hybrid electric vehicle) has been expanding. However, various problems have an ongoing discussion. When the production of electricity by RESs exceeds the power consumption, it is possible to cause a steep variation of point voltage and a deviation from a proper voltage range in a distribution system to which RESs are interconnected. When EVs and PHEVs have spread to the distribution system, a new peak power-demand and a steep voltage drop might occur in the midnight charging time zone in case the electricity charges are low. in this paper, the authors analyze the effects on the distribution system under widespread PVs, EVs, and PHEVs. In addition, the authors propose an improvement plan and analyze about the influence and contribution.展开更多
Solar energy is the most available, clean and inexpensive source of energy among the other renewable sources of energy. This work deals with experimental steady to determent the performance of solar tower steam produc...Solar energy is the most available, clean and inexpensive source of energy among the other renewable sources of energy. This work deals with experimental steady to determent the performance of solar tower steam production for power generation. Designed and fabricated of a solar tower, consist of a central receiver tank (0.4 m × 0.6 m × 1.0 m) and 150 heliostat mirrors arranged around it. The central tank was made of galvanized steel. Each heliostat consisted of two (0.5 m × 0.5 m) mirrors. The results of this work produce steam at temperature 110 ℃. Large steam quantity could be obtained when using large scale experimental. The results of the work give good indication for application of solar energy to produce power in Iraq.展开更多
With the integration of renewable power and electric vehicle,the power system stability is of increasing concern because the active power generated by the renewable energy and absorbed by the electric vehicle vary ran...With the integration of renewable power and electric vehicle,the power system stability is of increasing concern because the active power generated by the renewable energy and absorbed by the electric vehicle vary randomly.Based on the deterministic differential equation model,the nonlinear and linear stochastic differential equation models of power system under Gauss type random excitation are proposed in this paper.The angle curves under different random excitations were simulated using Euler-Maruyama(EM) numerical method.The numerical stability of EM method was proved.The mean stability and mean square stability of the power system under Gauss type of random small excitation were verified theoretically and illustrated with simulation sample.展开更多
基金The National Hi-Tech Research and Development Program(863)of China(No.2002AA501700No.2003AA501012)
文摘A novel regenerative braking algorithm based on regenerative torque optimization with emulate engine compression braking (EECB) was proposed to make effective and maximum use of brake energy in order to improve fuel economy.The actual brake oil pressure of driving wheel which is reduced by the amount of the regenerative braking force is supplied from the electronic hydraulic brake system.Regenerative torque optimization maximizes the actual regenerative power recuperation by energy storage component,and EECB is a useful extended type of regenerative braking.The simulation results show that actual regenerative power recuperation for the novel regenerative braking algorithm is more than using conventional one,and life-span of brake disks is prolonged for the novel algorithm.
基金Project(2013AA064003)supported by the National High Technology Research and Development Program of ChinaProject(2012HB008)supported by Young and Middle-aged Academic Technology Leader Backup Talent Cultivation Program in Yunnan Province,China
文摘The technology that waste activated carbon after extracting gold is regenerated with steam under microwave heating was studied. The influence of the activation temperature, activation duration and steam flow rate on iodine adsorption value and regeneration yield of activated carbon was investigated. The response surface methodology (RSM) technique was utilized to optimize the process conditions. The optimum conditions for the preparation of activated carbon are identified to be activation temperature of 831 ℃, activation duration of 40 min and steam flow rate of 2.67 mL/min. The optimum conditions result in an activated carbon with an iodine number of 1048 mg/g and a yield of 40%, and the BET surface area evaluated using nitrogen adsorption isotherm is 1493 m2/g, with total pore volume of 1.242 cm3/g. And the pore structure of activated carbon regenerated is mainly composed of micropores and a small amount of mesopores.
基金Supported by the National Natural Science Foundation of China(No.50875054)Weihai Science and Technology Development Plan Project(No.2012DXGJ13)
文摘A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which is aimed at efficient operation of the overall system considering the operational characteristic of the components and taking the curves of engine, hydraulic pump/motor and hydrau- lic pump as the main design basis; regenerative control strategy which makes regenerative brake sys- tem and frictional brake system work harmoniously is designed to raise recovery rate of regenerative brake energy. System dynamic modeling and simulation results show that the energy control strategy designed here is able to adapt system to changes of working condition and switch the operating mode reasonably. The regenerative braking control strategy is effective in raising the utilization of energy and improving fuel economy.
文摘The purpose of this study is to develop low cost adsorbing materials to remove the heavy metals from waste waters. The outer covering of coconut, coconut shell, is the most abundant in the countries of its plantation and enormous use. Utilization of agricultural waste (coconut shell) in the production of activated carbon potentially leads to produce a highly effective adsorbent generated from low cost raw materials that are available in huge quantity as renewable resources. At present coconut shell is not in use as valuable entity due to which disposal and ultimate environmental problems are faced. In this study coconut shells were impregnated with phosphoric acid and chemically activated at 450 C. The potential to remove chromium (VI) from aqueous solution by using activated coconut shells was investigated by batch experiment. The various sorption parameters i.e pH, sorbent dose, sorbate concentration, agitation time and agitation speed were optimized. The sorption of Cr (VI) onto activated carbon, developed from coconut shell, at pH 2 was achieved 81.25%. The best optimum conditions were obtained when 0.75 gm of sorbent was agitated at 150 rpm with 60 mg/L of sorbate for 40 min. Activated coconut shells has potential to be a good resource material for effective removal of chromium (VI) of low concentration from wastewater.
文摘In recent years, against a background of an environmental problem and resource problem, the introduction of RES (renewable energy source) such as wind power generation and PV (photovoltaic generation), EV (electric vehicle), and PHEV (Plug-in hybrid electric vehicle) has been expanding. However, various problems have an ongoing discussion. When the production of electricity by RESs exceeds the power consumption, it is possible to cause a steep variation of point voltage and a deviation from a proper voltage range in a distribution system to which RESs are interconnected. When EVs and PHEVs have spread to the distribution system, a new peak power-demand and a steep voltage drop might occur in the midnight charging time zone in case the electricity charges are low. in this paper, the authors analyze the effects on the distribution system under widespread PVs, EVs, and PHEVs. In addition, the authors propose an improvement plan and analyze about the influence and contribution.
文摘Solar energy is the most available, clean and inexpensive source of energy among the other renewable sources of energy. This work deals with experimental steady to determent the performance of solar tower steam production for power generation. Designed and fabricated of a solar tower, consist of a central receiver tank (0.4 m × 0.6 m × 1.0 m) and 150 heliostat mirrors arranged around it. The central tank was made of galvanized steel. Each heliostat consisted of two (0.5 m × 0.5 m) mirrors. The results of this work produce steam at temperature 110 ℃. Large steam quantity could be obtained when using large scale experimental. The results of the work give good indication for application of solar energy to produce power in Iraq.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51137002,51190102)the Fundamental Research Funds for the Central Universities (Grant No. BZX/09B101-32)
文摘With the integration of renewable power and electric vehicle,the power system stability is of increasing concern because the active power generated by the renewable energy and absorbed by the electric vehicle vary randomly.Based on the deterministic differential equation model,the nonlinear and linear stochastic differential equation models of power system under Gauss type random excitation are proposed in this paper.The angle curves under different random excitations were simulated using Euler-Maruyama(EM) numerical method.The numerical stability of EM method was proved.The mean stability and mean square stability of the power system under Gauss type of random small excitation were verified theoretically and illustrated with simulation sample.