The study on high-speed centrifugal-regenerative pumps with an inducer (HCRP) is carried out. The combined structure of inducer, centrifugal impeller, and regenerative impeller is presented, and a theoretical parallel...The study on high-speed centrifugal-regenerative pumps with an inducer (HCRP) is carried out. The combined structure of inducer, centrifugal impeller, and regenerative impeller is presented, and a theoretical parallel combinatorial hydraulic design method is investigated. The comparative experimental results show that efficiency in smaller capacity region, head coefficient and efficiency in larger capacity region of HCRPs is few lower, much higher and lower than those of high-speed centrifugal pumps, respectively, and that the suction performance of HCRPs is determined only by inducer. HCRPs can be more suitably applied to deliver small-capacity high-head liquids in chemical and petrochemical industries.展开更多
The growing demand on non-fossil fuel energy has escalated the desire for mega-scale renewable energy power generation, which can no longer be satisfied solely by relying on onshore renewable energy power plants. Outc...The growing demand on non-fossil fuel energy has escalated the desire for mega-scale renewable energy power generation, which can no longer be satisfied solely by relying on onshore renewable energy power plants. Outcomes from a recent project funded by the Sixth European Union Framework Programme (FP6), Project "Upwind" concluded that larger offshore wind turbines (i.e., 〉 10 MW) are feasible and cost effective. It will be beneficial for such future large scale renewable energy power generators (i.e., large offshore turbines) and plant (i.e., large offshore wind farms) to have a dedicated high efficiency, robust, flexible and low cost power collection, transmission and distribution technology. Proposed in this paper is a compact and effective hybrid HVDC (high voltage direct current) transformer that allows realisation of a highly robust and financially rewarding next generation multi-terminal HVDC system for future offshore renewable energy power plant. This concept, potentially, allows the elimination or minimisation of the need for a centralised local offshore HVDC platform or substation in each wind farm, solar farm, or tidal farm. This paper discusses the study outcome of the proposed hybrid HVDC transformer and the application of a multi-terminal HVDC system in the renewable energy industry, compared to the existing HVAC and VSC (voltage source converters) type HVDC systems.展开更多
Overmodulation is frequently required during the transient interval at high speed operations of IPMSMs (interior permanent magnet synchronous motors). In this work, an overmodulation method is developed in the synch...Overmodulation is frequently required during the transient interval at high speed operations of IPMSMs (interior permanent magnet synchronous motors). In this work, an overmodulation method is developed in the synchronous reference frame with a provision of assigning different priorities to d- and q-axes currents. During the current boosting in motoring, the d-axis current is increased by priority for a fast current response, and to minimize the overmodulation period. However in the regeneration process, the q-axis current is decreased by priority during a load reduction. Simulation and experimental results show that the proposed method, compared with the existing minimum-phase error method, is better for a fast current response, and in shortening the overmodulation period.展开更多
As a kind of clean and renewable energy,tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe.A floating tidal cu...As a kind of clean and renewable energy,tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe.A floating tidal current power station is a typical type of tidal current power transformers which can sustain the loads of wind,waves,and current,and even the extreme situation of a typhoon.Therefore,the mooring system must be reliable enough to keep the station operating normally and to survive in extreme situations.The power station examined in this paper was installed at a depth of 40 m.A 44 mm-diameter R4-RQ4 chain was chosen,with a 2 147 kN minimum break strength and 50 kN pretension.Common studless link chain was used in this paper.Based on the Miner fatigue cumulative damage rule,S-N curves of chains,and MOSES software,a highly reliable mooring system was designed and analyzed.The calculation results show that the mooring system designed is reliable throughout a 10-year period.It can completely meet the design requirements of American Petroleum institution(API).Therefore,the presented research is significant for advancing the design of this kind of power station.展开更多
MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchr...MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchronous generator in the developed MHPP system is introduced. Proposed hybrid DC excitation system consists of solar & hydrogen energy based power generating systems. Hybrid renewable energy based system is used for the excitation of the synchronous generator in the MHPP test system. The renewables are used as a secondary energy source to provide the excitation current to a synchronous generator that generates energy in MHPP. A PV (photovoltaic) array is used as the main source of excitation, and a FC (fuel cell) stack is used for DC excitation in the lack of sunshine. In the experimental setup, an electrical control card is developed, and a microcontroller is used to perform the proposed excitation system. All experimental results obtained from 5 kW rated power MHHP test system. Experimental results show that, the proposed method provides the continuous excitation current, and the operation of the synchronous generator is uninterrupted. The proposed method is also practical and easily implemented for MHPP systems.展开更多
基金Supported by the National Natural Science Foundation of China (No. 50105018) and Zhejiang Provincial Natural Science Foundation of China (No. 501119).
文摘The study on high-speed centrifugal-regenerative pumps with an inducer (HCRP) is carried out. The combined structure of inducer, centrifugal impeller, and regenerative impeller is presented, and a theoretical parallel combinatorial hydraulic design method is investigated. The comparative experimental results show that efficiency in smaller capacity region, head coefficient and efficiency in larger capacity region of HCRPs is few lower, much higher and lower than those of high-speed centrifugal pumps, respectively, and that the suction performance of HCRPs is determined only by inducer. HCRPs can be more suitably applied to deliver small-capacity high-head liquids in chemical and petrochemical industries.
文摘The growing demand on non-fossil fuel energy has escalated the desire for mega-scale renewable energy power generation, which can no longer be satisfied solely by relying on onshore renewable energy power plants. Outcomes from a recent project funded by the Sixth European Union Framework Programme (FP6), Project "Upwind" concluded that larger offshore wind turbines (i.e., 〉 10 MW) are feasible and cost effective. It will be beneficial for such future large scale renewable energy power generators (i.e., large offshore turbines) and plant (i.e., large offshore wind farms) to have a dedicated high efficiency, robust, flexible and low cost power collection, transmission and distribution technology. Proposed in this paper is a compact and effective hybrid HVDC (high voltage direct current) transformer that allows realisation of a highly robust and financially rewarding next generation multi-terminal HVDC system for future offshore renewable energy power plant. This concept, potentially, allows the elimination or minimisation of the need for a centralised local offshore HVDC platform or substation in each wind farm, solar farm, or tidal farm. This paper discusses the study outcome of the proposed hybrid HVDC transformer and the application of a multi-terminal HVDC system in the renewable energy industry, compared to the existing HVAC and VSC (voltage source converters) type HVDC systems.
文摘Overmodulation is frequently required during the transient interval at high speed operations of IPMSMs (interior permanent magnet synchronous motors). In this work, an overmodulation method is developed in the synchronous reference frame with a provision of assigning different priorities to d- and q-axes currents. During the current boosting in motoring, the d-axis current is increased by priority for a fast current response, and to minimize the overmodulation period. However in the regeneration process, the q-axis current is decreased by priority during a load reduction. Simulation and experimental results show that the proposed method, compared with the existing minimum-phase error method, is better for a fast current response, and in shortening the overmodulation period.
基金Supported by the National "863" Program (Grant No.2007AA05Z450)the National S&T Program (Grant No.2008BAA15B04)+2 种基金2010 Ocean Special Funds (Grant No. ZJME2010GC01, No. ZJME2010CY01)Fundamental Research Funds for the Central Universities (GK2010260106)"111 Project" Foundation (Grant No. B07019) from State Administration of Foreign Experts Affairs of China and Ministry of Education of China
文摘As a kind of clean and renewable energy,tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe.A floating tidal current power station is a typical type of tidal current power transformers which can sustain the loads of wind,waves,and current,and even the extreme situation of a typhoon.Therefore,the mooring system must be reliable enough to keep the station operating normally and to survive in extreme situations.The power station examined in this paper was installed at a depth of 40 m.A 44 mm-diameter R4-RQ4 chain was chosen,with a 2 147 kN minimum break strength and 50 kN pretension.Common studless link chain was used in this paper.Based on the Miner fatigue cumulative damage rule,S-N curves of chains,and MOSES software,a highly reliable mooring system was designed and analyzed.The calculation results show that the mooring system designed is reliable throughout a 10-year period.It can completely meet the design requirements of American Petroleum institution(API).Therefore,the presented research is significant for advancing the design of this kind of power station.
文摘MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchronous generator in the developed MHPP system is introduced. Proposed hybrid DC excitation system consists of solar & hydrogen energy based power generating systems. Hybrid renewable energy based system is used for the excitation of the synchronous generator in the MHPP test system. The renewables are used as a secondary energy source to provide the excitation current to a synchronous generator that generates energy in MHPP. A PV (photovoltaic) array is used as the main source of excitation, and a FC (fuel cell) stack is used for DC excitation in the lack of sunshine. In the experimental setup, an electrical control card is developed, and a microcontroller is used to perform the proposed excitation system. All experimental results obtained from 5 kW rated power MHHP test system. Experimental results show that, the proposed method provides the continuous excitation current, and the operation of the synchronous generator is uninterrupted. The proposed method is also practical and easily implemented for MHPP systems.