Method for constructing the optimal water supply line and formulas for calculating the targets for single-contaminant regeneration recycling water systems are improved to apply to the situation of variational pararnet...Method for constructing the optimal water supply line and formulas for calculating the targets for single-contaminant regeneration recycling water systems are improved to apply to the situation of variational pararneters in this article. Based on these extending methods, the effect of varying freshwater consumption and regenerated water flow rate on the optimizing results are investigated. The interactions of parameters of regeneration recycling systems are summarized. Finally, all the conclusions are illustrated from the results of mathematical programming through an example.展开更多
AIM: To investigate the effectiveness of direct hemoperfusion with polymyxin B-immobilized fibers (DHPPMX therapy) on warm ischemia-reperfusion (I/R) injury of the small intestine.METHODS: The proximal jejunum a...AIM: To investigate the effectiveness of direct hemoperfusion with polymyxin B-immobilized fibers (DHPPMX therapy) on warm ischemia-reperfusion (I/R) injury of the small intestine.METHODS: The proximal jejunum and distal ileum of mongrel dogs were resected. Warm ischemia was performed by clamping the superior mesenteric artery (SMA) and vein (SMV) for 2 h. Blood flow to the proximal small intestine was restored 1 h after reperfusion, and the distal small intestine was used as a stoma. The experiment was discontinued 6 h after reperfusion. The dogs were divided into two groups: the DHP-PMX group (n = 6, DHP-PMX was performed for 180 min; from 10 min prior to reperfusion to 170 rain after reperfusion) and the control group (n = 5). The rate pressure product (RPP), SMA blood flow, mucosal tissue blood flow, and intramucosal pH (pHi) were compared between the two groups. The serum interleukin (IL)-10 levels measured 170 min after reperfusion were also compared.RESULTS: The RPP at 6 h after reperfusion was significantly higher in the PMX group than in the control group (12174 ± 1832 mmHg/min vs 8929 ± 1797 mmHg/min, P 〈 0.05). The recovery rates of the SMA blood flow at I and 6 h after reperfusion were significantly better in the PMX group than in the control group (61%±7% vs 44% ±4%, P 〈 0.05, and 59%±5% vs 35%±5%, P 〈 0.05, respectively). The recovery rate of the mucosal tissue blood flow and the pHi levels at 6 h after reperfusion were significantly higher in the PMX group (61%±8% vs 31%±3%, P 〈 0.05 and 7.91±0.06 vs 7.69±0.08, P 〈 0.05, respectively). In addition, the serum IL-IO levels just before DHP-PMX removal were significantly higher in the PMX group than in the control group (1 569 ± 253 pg/mL vs 211± 40 pg/mL, P 〈 0.05).CONCLUSION: DHP-PMX therapy reduced warm I/R injury of the small intestine. IL-10 may play a role in inhibiting I/R injury during DHP-PMX therapy.展开更多
In order to recover the SiO_2 contained in the mother liquor in the course ofNaY zeolite synthesis to minimize pollution, the influence of various preparation conditions on thefiltering velocity of gel slurry was stud...In order to recover the SiO_2 contained in the mother liquor in the course ofNaY zeolite synthesis to minimize pollution, the influence of various preparation conditions on thefiltering velocity of gel slurry was studied using the SiO_2/Al_2O_3 gel recovered from the NaYmother liquor in the laboratory. The results of study had shown that at a SiO_2/Al_2O_3 ratio in thefeed equating to 9∶1 the SiO_2 recovery rate and Al_2O_3 utilization rate were high with a fasterflow velocity of the filtrate. The pH value of the system had great impact on the flow velocity offiltrate. Between the two methods for regulating the pH value, the one for formation ofsilica/alumina gel slurry by addition of sulfuric acid prior to adding aluminium sulfate in thesolution could secure a faster filtration velocity. The filtration velocity was decreased in tandemwith increasing SiO_2 concentration in mother liquor, meanwhile an increase in dry filter cakeyield.展开更多
This paper presents a new concept of TIRFE (total integration of renewable and fossil energies), represented by an octagonal structure of all sources, vectors of transmission and optimization of consumption, aiming ...This paper presents a new concept of TIRFE (total integration of renewable and fossil energies), represented by an octagonal structure of all sources, vectors of transmission and optimization of consumption, aiming to a clean and sustainable energy system. The main TIRFE technologies are: cogeneration of H2 and EE (electric energy) by H2-BGSCW/TEU (biomass gasification in supercritical water integrated with a thermoelectric unit); use of H2 from biomass in oil refinery processes for production of light and clean derivatives; supply of 1-12 deficiency for methanol production from coal; carbon sequestration by a basket of technologies (exhausted petroleum and gas) wells, underground saline aquifers, forests and stockpile of cellulignin-CL-produced from forest residues); use of H2-BGSCW/TEU as district CHP (combined heat and power) with photovoltaic panels for EE, including electric car battery recharge; optimization of energy consumption by verticalization of the cities replacing low strength materials (bricks and common cement) by high performance concrete with addition of silica from rice husk. TIRFE helps to solve key problems of H2-BGSCW/TEU, such as materials, energy recovery, plugging, corrosion, economics and energy security for the first generation of plants, and organizes the development for the second generation. TIRFE can be incrementally implanted in existent and new cities.展开更多
Irrigation with reclaimed water is an important way to deal with water shortage of agricultural production and solve the problem of sewage pollution. The response of crop antioxidant enzyme system is an early-warning ...Irrigation with reclaimed water is an important way to deal with water shortage of agricultural production and solve the problem of sewage pollution. The response of crop antioxidant enzyme system is an early-warning indicator of environmental factors changes. Compared with raw wastewater and used fresh water as controls, this research studied peroxides (POD), superoxide dismutase (SOD) activities and malondialdehyde (MDA) content in leaves from maize (Zea mays L.) and soybean (Phaseolus vulgaris L.) with pot culture under irrigating with reclaimed water which with secondary and third treatment. The results showed that secondary reclaimed water had some adverse effects on antioxidant system of maize in seedling stage, and the influence decreased in later stage of maize; effect of the third reclaimed water on antioxidant system of maize was not significant. Irrigation with reclaimed water has little influence on antioxidant system of soybean in seedling and reaping stage, but it could bring some oxidative stress in blossom stage. As a result, irrigating maize with second or third reclaimed water is safe to the growth of maize and soybean, but it is suggested that second reclaimed water should not be used in seedling stage of maize and reclaimed water should not be used in the second stage of soybean.展开更多
Power systems in Germany mainly containing intermittently operating renewable sources require load/frequency control which is performed up to now at the AC transmissioh and distribution levels. Frequency control can b...Power systems in Germany mainly containing intermittently operating renewable sources require load/frequency control which is performed up to now at the AC transmissioh and distribution levels. Frequency control can be achieved by employing short-and long-term storage plants buffering and complementing renewable energy sources. A representative grid consists of a natural-gas-fired plant serving as frequency leader, long-term storage plant, wind-power farm with associated short-term storage plantfor energy buffering, and photovoltaic farm with associated short-term storage plant interconnected by a long transmission line to two load circuits. Transient analysis is performed with Mathemafica solving the differential equation system for frequency variation. Powerflow through the AC transmission line is limited by its impedance. The long transmission line must be segmented to achieve stability and voltage control over an 800 km distance. The renewable plants must be operated together with the storage plants in order tominimize frequency variations by smoothing the power output of renewable plants, achieving step-wise control of the transmission-line power. Although to date only AC Iransmission lines in Germany exist, it is anticipated that within the next 10 years these will beaugmented by DC high-voltage lines.展开更多
Supports are commonly implemented in the industrial application of heterogeneous catalysts to improve the stability and recyclability of catalysts.The supported catalysts often show the enhanced activity and selectivi...Supports are commonly implemented in the industrial application of heterogeneous catalysts to improve the stability and recyclability of catalysts.The supported catalysts often show the enhanced activity and selectivity in various catalytic reactions.However,the specific contributions of electronic and steric effects to a catalytic system often remain elusive due to the lack of well-defined model systems.In this work,two types of uniform Pd nanocrystals covered by{111}facets in tetrahedral and octahedral shapes,respectively,are synthesized with identical chemical environment and loaded on Ti O_2supports to form hybrid structures(Pd{111}-Ti O_2)towards the application of formic acid decomposition.Our observation suggests that the polarization effect at the interface of Pd-Ti O_2enhances its activity in formic acid decomposition.Moreover,the Pd tetrahedrons-Ti O_2hybrid structure whose Pd{111}-Ti O_2interface possesses a larger angle shows higher catalytic activity,owing to the reduced steric effect as compared to Pd octahedrons-Ti O_2.This study reveals the nature of interface effects in formic acid decomposition,and provides a guidance for the related catalyst design.展开更多
The aim of this study is to find an optimal design for a distributed hybrid renewable energy system(HRES) for a residential house in the UK. The hybrid system, which consists of wind turbines, PV arrays, a biodiesel g...The aim of this study is to find an optimal design for a distributed hybrid renewable energy system(HRES) for a residential house in the UK. The hybrid system, which consists of wind turbines, PV arrays, a biodiesel generator, batteries and converters, is designed to meet the known dynamic electrical load of the house and make use of renewable energy resources available locally. Hybrid Optimization Model for Electric Renewables(HOMER) software is used for this study. Different combinations of wind turbines, PV arrays, a biodiesel generator and batteries are evaluated and compared using the NPC(Net Present Cost) method to find the optimal solutions. The HRES is modeled, simulated and optimized using HOMER. The results showed that the wind-biodiesel engine-battery system was the best with the lowest NPC(USD 60254) and the lowest COE(Cost of Energy, USD 0.548/k Wh) while the second best system added PV arrays. This study gives evidence of the key contribution wind turbines make to HRES due to abundant wind resources in the UK, especially in Wales.展开更多
基金Supported by the National Natural Science Foundation of China (No.20436040).
文摘Method for constructing the optimal water supply line and formulas for calculating the targets for single-contaminant regeneration recycling water systems are improved to apply to the situation of variational pararneters in this article. Based on these extending methods, the effect of varying freshwater consumption and regenerated water flow rate on the optimizing results are investigated. The interactions of parameters of regeneration recycling systems are summarized. Finally, all the conclusions are illustrated from the results of mathematical programming through an example.
文摘AIM: To investigate the effectiveness of direct hemoperfusion with polymyxin B-immobilized fibers (DHPPMX therapy) on warm ischemia-reperfusion (I/R) injury of the small intestine.METHODS: The proximal jejunum and distal ileum of mongrel dogs were resected. Warm ischemia was performed by clamping the superior mesenteric artery (SMA) and vein (SMV) for 2 h. Blood flow to the proximal small intestine was restored 1 h after reperfusion, and the distal small intestine was used as a stoma. The experiment was discontinued 6 h after reperfusion. The dogs were divided into two groups: the DHP-PMX group (n = 6, DHP-PMX was performed for 180 min; from 10 min prior to reperfusion to 170 rain after reperfusion) and the control group (n = 5). The rate pressure product (RPP), SMA blood flow, mucosal tissue blood flow, and intramucosal pH (pHi) were compared between the two groups. The serum interleukin (IL)-10 levels measured 170 min after reperfusion were also compared.RESULTS: The RPP at 6 h after reperfusion was significantly higher in the PMX group than in the control group (12174 ± 1832 mmHg/min vs 8929 ± 1797 mmHg/min, P 〈 0.05). The recovery rates of the SMA blood flow at I and 6 h after reperfusion were significantly better in the PMX group than in the control group (61%±7% vs 44% ±4%, P 〈 0.05, and 59%±5% vs 35%±5%, P 〈 0.05, respectively). The recovery rate of the mucosal tissue blood flow and the pHi levels at 6 h after reperfusion were significantly higher in the PMX group (61%±8% vs 31%±3%, P 〈 0.05 and 7.91±0.06 vs 7.69±0.08, P 〈 0.05, respectively). In addition, the serum IL-IO levels just before DHP-PMX removal were significantly higher in the PMX group than in the control group (1 569 ± 253 pg/mL vs 211± 40 pg/mL, P 〈 0.05).CONCLUSION: DHP-PMX therapy reduced warm I/R injury of the small intestine. IL-10 may play a role in inhibiting I/R injury during DHP-PMX therapy.
文摘In order to recover the SiO_2 contained in the mother liquor in the course ofNaY zeolite synthesis to minimize pollution, the influence of various preparation conditions on thefiltering velocity of gel slurry was studied using the SiO_2/Al_2O_3 gel recovered from the NaYmother liquor in the laboratory. The results of study had shown that at a SiO_2/Al_2O_3 ratio in thefeed equating to 9∶1 the SiO_2 recovery rate and Al_2O_3 utilization rate were high with a fasterflow velocity of the filtrate. The pH value of the system had great impact on the flow velocity offiltrate. Between the two methods for regulating the pH value, the one for formation ofsilica/alumina gel slurry by addition of sulfuric acid prior to adding aluminium sulfate in thesolution could secure a faster filtration velocity. The filtration velocity was decreased in tandemwith increasing SiO_2 concentration in mother liquor, meanwhile an increase in dry filter cakeyield.
文摘This paper presents a new concept of TIRFE (total integration of renewable and fossil energies), represented by an octagonal structure of all sources, vectors of transmission and optimization of consumption, aiming to a clean and sustainable energy system. The main TIRFE technologies are: cogeneration of H2 and EE (electric energy) by H2-BGSCW/TEU (biomass gasification in supercritical water integrated with a thermoelectric unit); use of H2 from biomass in oil refinery processes for production of light and clean derivatives; supply of 1-12 deficiency for methanol production from coal; carbon sequestration by a basket of technologies (exhausted petroleum and gas) wells, underground saline aquifers, forests and stockpile of cellulignin-CL-produced from forest residues); use of H2-BGSCW/TEU as district CHP (combined heat and power) with photovoltaic panels for EE, including electric car battery recharge; optimization of energy consumption by verticalization of the cities replacing low strength materials (bricks and common cement) by high performance concrete with addition of silica from rice husk. TIRFE helps to solve key problems of H2-BGSCW/TEU, such as materials, energy recovery, plugging, corrosion, economics and energy security for the first generation of plants, and organizes the development for the second generation. TIRFE can be incrementally implanted in existent and new cities.
基金This paper was supported by the National High Technology Research and Development Program of China (863 Program, No. 2006AA100205) and National Natural Science Foundation of China (No. 50679080)
文摘Irrigation with reclaimed water is an important way to deal with water shortage of agricultural production and solve the problem of sewage pollution. The response of crop antioxidant enzyme system is an early-warning indicator of environmental factors changes. Compared with raw wastewater and used fresh water as controls, this research studied peroxides (POD), superoxide dismutase (SOD) activities and malondialdehyde (MDA) content in leaves from maize (Zea mays L.) and soybean (Phaseolus vulgaris L.) with pot culture under irrigating with reclaimed water which with secondary and third treatment. The results showed that secondary reclaimed water had some adverse effects on antioxidant system of maize in seedling stage, and the influence decreased in later stage of maize; effect of the third reclaimed water on antioxidant system of maize was not significant. Irrigation with reclaimed water has little influence on antioxidant system of soybean in seedling and reaping stage, but it could bring some oxidative stress in blossom stage. As a result, irrigating maize with second or third reclaimed water is safe to the growth of maize and soybean, but it is suggested that second reclaimed water should not be used in seedling stage of maize and reclaimed water should not be used in the second stage of soybean.
文摘Power systems in Germany mainly containing intermittently operating renewable sources require load/frequency control which is performed up to now at the AC transmissioh and distribution levels. Frequency control can be achieved by employing short-and long-term storage plants buffering and complementing renewable energy sources. A representative grid consists of a natural-gas-fired plant serving as frequency leader, long-term storage plant, wind-power farm with associated short-term storage plantfor energy buffering, and photovoltaic farm with associated short-term storage plant interconnected by a long transmission line to two load circuits. Transient analysis is performed with Mathemafica solving the differential equation system for frequency variation. Powerflow through the AC transmission line is limited by its impedance. The long transmission line must be segmented to achieve stability and voltage control over an 800 km distance. The renewable plants must be operated together with the storage plants in order tominimize frequency variations by smoothing the power output of renewable plants, achieving step-wise control of the transmission-line power. Although to date only AC Iransmission lines in Germany exist, it is anticipated that within the next 10 years these will beaugmented by DC high-voltage lines.
基金supported in part by National Key R&D Program of China (2017YFA0207301)the National Natural Science Foundation of China (21725102, 21471141, U1532135, 21601173)+3 种基金CAS Key Research Program of Frontier Sciences (QYZDB-SSW-SLH018)CAS Interdisciplinary Innovation Team, Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2016FXCX003)Anhui Provincial Natural Science Foundation (1608085QB24)Chinese Universities Scientific Fund(WK2310000067)
文摘Supports are commonly implemented in the industrial application of heterogeneous catalysts to improve the stability and recyclability of catalysts.The supported catalysts often show the enhanced activity and selectivity in various catalytic reactions.However,the specific contributions of electronic and steric effects to a catalytic system often remain elusive due to the lack of well-defined model systems.In this work,two types of uniform Pd nanocrystals covered by{111}facets in tetrahedral and octahedral shapes,respectively,are synthesized with identical chemical environment and loaded on Ti O_2supports to form hybrid structures(Pd{111}-Ti O_2)towards the application of formic acid decomposition.Our observation suggests that the polarization effect at the interface of Pd-Ti O_2enhances its activity in formic acid decomposition.Moreover,the Pd tetrahedrons-Ti O_2hybrid structure whose Pd{111}-Ti O_2interface possesses a larger angle shows higher catalytic activity,owing to the reduced steric effect as compared to Pd octahedrons-Ti O_2.This study reveals the nature of interface effects in formic acid decomposition,and provides a guidance for the related catalyst design.
基金The Project of Guangxi University Outstanding Post-graduate Student AbroadThe Project of Guangxi University for Youth(2018KY1120,2018KY1121)
文摘The aim of this study is to find an optimal design for a distributed hybrid renewable energy system(HRES) for a residential house in the UK. The hybrid system, which consists of wind turbines, PV arrays, a biodiesel generator, batteries and converters, is designed to meet the known dynamic electrical load of the house and make use of renewable energy resources available locally. Hybrid Optimization Model for Electric Renewables(HOMER) software is used for this study. Different combinations of wind turbines, PV arrays, a biodiesel generator and batteries are evaluated and compared using the NPC(Net Present Cost) method to find the optimal solutions. The HRES is modeled, simulated and optimized using HOMER. The results showed that the wind-biodiesel engine-battery system was the best with the lowest NPC(USD 60254) and the lowest COE(Cost of Energy, USD 0.548/k Wh) while the second best system added PV arrays. This study gives evidence of the key contribution wind turbines make to HRES due to abundant wind resources in the UK, especially in Wales.