The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardn...The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardness tests,tensile tests,scanning electron microscopy and transmission electron microscopy.The softening temperature,hardness and tensile strength of the alloy prepared by Process 2 were 110°C,HV 15 and 114 MPa higher,respectively,than those of the alloy prepared by Process 1 after aging at 300°C.The recrystallization activation energy of the alloys prepared by Process 1 and Process 2 were 72.83 and 98.11 kJ/mol,respectively.The pinning effects of the precipitates of the two alloys on grain boundaries and dislocations were basically the same.The softening mechanism was mainly attributed to the loss of dislocation strengthening.The higher Fe fiber density inhibited the average free migration path of dislocations and grain boundary migration in the alloy,which was the main reason for higher softening temperature of the alloy prepared by Process 2.展开更多
The flow stress behavior of extruded AZ31 magnesium alloy sheet was investigated by means of compression tests at temperatures between 473 and 523 K and strain rates ranging from 0.001 to 1.0 s-1. The deformation acti...The flow stress behavior of extruded AZ31 magnesium alloy sheet was investigated by means of compression tests at temperatures between 473 and 523 K and strain rates ranging from 0.001 to 1.0 s-1. The deformation activation energy of the sheet in extrusion direction (ED) was calculated, and the relationship between the softening effect and deformation mechanism was elucidated by optical microscopy and transmission electron microscopy. The results show that when the extruded AZ31 magnesium alloy samples were compressed at moderate temperatures in ED direction, the deformation activation energy is 174.18 kJ/mol, which means that dynamic recrystallization (DRX) is the main softening effect and is controlled by cross slip of thermal active dislocation. Dislocation slip is the main deformation mechanism in moderate-temperature deformation process except twinning. The main DRX effect at moderate temperatures can be considered to be continuous dynamic recrystallization accommodated with twinning DRX.展开更多
基金financial supports from the Department of Science and Technology and other Provincial and Ministerial Level Projects,China(No.204306800086)Science and Technology Projects of Ganzhou Science and Technology Bureau,China(No.204301000194)the Science and Technology Project of Jiangxi Provincial Department of Education,China(No.204201400853)。
文摘The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardness tests,tensile tests,scanning electron microscopy and transmission electron microscopy.The softening temperature,hardness and tensile strength of the alloy prepared by Process 2 were 110°C,HV 15 and 114 MPa higher,respectively,than those of the alloy prepared by Process 1 after aging at 300°C.The recrystallization activation energy of the alloys prepared by Process 1 and Process 2 were 72.83 and 98.11 kJ/mol,respectively.The pinning effects of the precipitates of the two alloys on grain boundaries and dislocations were basically the same.The softening mechanism was mainly attributed to the loss of dislocation strengthening.The higher Fe fiber density inhibited the average free migration path of dislocations and grain boundary migration in the alloy,which was the main reason for higher softening temperature of the alloy prepared by Process 2.
基金Project (50804015) supported by the National Natural Science Foundation of ChinaProject (GJJ11162) supported by the Youth Science Foundation of Jiangxi Educational Committee,ChinaProject (EA201001035) supported by the Doctor Startup Foundation of Nanchang Hangkong University,China
文摘The flow stress behavior of extruded AZ31 magnesium alloy sheet was investigated by means of compression tests at temperatures between 473 and 523 K and strain rates ranging from 0.001 to 1.0 s-1. The deformation activation energy of the sheet in extrusion direction (ED) was calculated, and the relationship between the softening effect and deformation mechanism was elucidated by optical microscopy and transmission electron microscopy. The results show that when the extruded AZ31 magnesium alloy samples were compressed at moderate temperatures in ED direction, the deformation activation energy is 174.18 kJ/mol, which means that dynamic recrystallization (DRX) is the main softening effect and is controlled by cross slip of thermal active dislocation. Dislocation slip is the main deformation mechanism in moderate-temperature deformation process except twinning. The main DRX effect at moderate temperatures can be considered to be continuous dynamic recrystallization accommodated with twinning DRX.