The wear behavior and mild−severe(M−S)wear transition of Mg−10Gd−1.5Y−0.4Zr alloy were investigated within a temperature range of 20−200℃.The morphologies and compositions of worn surfaces were examined to identify t...The wear behavior and mild−severe(M−S)wear transition of Mg−10Gd−1.5Y−0.4Zr alloy were investigated within a temperature range of 20−200℃.The morphologies and compositions of worn surfaces were examined to identify the wear mechanisms using scanning electron microscope and energy dispersive X-ray spectrometer.The microstructure and hardness in the subsurfaces were analyzed to reveal the M−S wear transition mechanism.Under a constant loads of 20,35 and 40 N,each wear rate−test temperature curve presented a turning point which corresponded to the M−S wear transition.In mild wear,the surface material was plastically deformed and hence was strainhardened,whereas in severe wear,the surface material was dynamically recrystallized and consequently was softened.It has been found that the critical temperature for M−S wear transition decreases with increasing the normal load,and the normal load exhibits an almost linear relationship with critical temperature for M−S wear transition.This work reveals that the M−S wear transition of the studied alloy conforms to the surface DRX temperature criterion.展开更多
The influence of free-end torsion on compressive behavior of an extruded AZ31 rod at various temperatures was studied.Pre-torsion generates a high density of dislocations and a large number of{1012}twins in the matrix...The influence of free-end torsion on compressive behavior of an extruded AZ31 rod at various temperatures was studied.Pre-torsion generates a high density of dislocations and a large number of{1012}twins in the matrix,which can largely enhance the compressive yield strength at RT and 100℃.However,with increasing temperature,hardening effect via pre-torsion gradually decreases.When the compressive temperature reaches 300℃,pre-torsion reduces the compressive yield strength.Moreover,initial dislocations and twins via torsion help to refine the sub-structure and accelerate the continuous dynamic recrystallization during compression at 200℃.Thus,twisted sample exhibits more rapid flow softening behavior than the as-extruded sample at 200℃.When compressed at 300℃,the twins and dislocations via torsion were largely eliminated during the holding time,and the discontinuous dynamic recrystallization was enhanced.It is found that the compression curves of twisted sample and as-extruded sample tended to be coincident at 300℃.Related mechanisms were discussed in detail.展开更多
基金financial support from the National Natural Science Foundation of China (No.51775226)。
文摘The wear behavior and mild−severe(M−S)wear transition of Mg−10Gd−1.5Y−0.4Zr alloy were investigated within a temperature range of 20−200℃.The morphologies and compositions of worn surfaces were examined to identify the wear mechanisms using scanning electron microscope and energy dispersive X-ray spectrometer.The microstructure and hardness in the subsurfaces were analyzed to reveal the M−S wear transition mechanism.Under a constant loads of 20,35 and 40 N,each wear rate−test temperature curve presented a turning point which corresponded to the M−S wear transition.In mild wear,the surface material was plastically deformed and hence was strainhardened,whereas in severe wear,the surface material was dynamically recrystallized and consequently was softened.It has been found that the critical temperature for M−S wear transition decreases with increasing the normal load,and the normal load exhibits an almost linear relationship with critical temperature for M−S wear transition.This work reveals that the M−S wear transition of the studied alloy conforms to the surface DRX temperature criterion.
基金the National Natural Science Foundation of China(No.51601154)Southwest University Undergraduate Innovation Project(No.zsm2021026).
文摘The influence of free-end torsion on compressive behavior of an extruded AZ31 rod at various temperatures was studied.Pre-torsion generates a high density of dislocations and a large number of{1012}twins in the matrix,which can largely enhance the compressive yield strength at RT and 100℃.However,with increasing temperature,hardening effect via pre-torsion gradually decreases.When the compressive temperature reaches 300℃,pre-torsion reduces the compressive yield strength.Moreover,initial dislocations and twins via torsion help to refine the sub-structure and accelerate the continuous dynamic recrystallization during compression at 200℃.Thus,twisted sample exhibits more rapid flow softening behavior than the as-extruded sample at 200℃.When compressed at 300℃,the twins and dislocations via torsion were largely eliminated during the holding time,and the discontinuous dynamic recrystallization was enhanced.It is found that the compression curves of twisted sample and as-extruded sample tended to be coincident at 300℃.Related mechanisms were discussed in detail.