This paper describes an in-house developed language tool called VPerl used in developing a 250 MHz 32-bit high-performance low power embedded CPU core. The authors showed that use of this tool can compress the Verilog...This paper describes an in-house developed language tool called VPerl used in developing a 250 MHz 32-bit high-performance low power embedded CPU core. The authors showed that use of this tool can compress the Verilog code by more than a factor of 5, increase the efficiency of the front-end design, reduce the bug rate significantly. This tool can be used to enhance the reusability of an intellectual property model, and facilitate porting design for different platforms.展开更多
If only at a small scale,islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy:the functional replenishment of damaged tissue in patients.After years of less-thanop...If only at a small scale,islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy:the functional replenishment of damaged tissue in patients.After years of less-thanoptimal approaches to immunosuppression,recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation.Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention.Progress in stem cell research over the past decade,coupled with our decades-long experience with islet transplantation,is shaping the future of cell therapies for the treatment of diabetes.Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration,including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.展开更多
As a milestone breakthrough of stem cell and regenerative medicine in recent years, somatic cell reprogramming has opened up new applications of regenerative medicine by breaking through the ethical shackles of embryo...As a milestone breakthrough of stem cell and regenerative medicine in recent years, somatic cell reprogramming has opened up new applications of regenerative medicine by breaking through the ethical shackles of embryonic stern cells. However, induced pluripo- tent stem (iPS) cells are prepared with a complicated protocol that results in a low reprogramming rate. To obtain differentiated target cells, iPS cells and embryonic stem cells still need to be induced using step-by-step procedures. The safety of induced target cells from iPS cells is currently a further concerning matter. More broadly conceived is lineage reprogramming that has been investigated since 1987. Adult stem cell plasticity, which triggered interest in stem cell research at the end of the last century, can also be included in the scope of lineage reprogramming. With the promotion of iPS cell research, lineage reprogramming is now considered as one of the most promising fields in regenerative medicine, will hopefully lead to customized, personalized therapeutic options for patients in the future.展开更多
microRNAs(miRNAs)are a class of small non-coding RNAs,which have been shown important to a wide range of biological process by post-transcriptionally regulating the expression of protein-coding genes.miRNAs have been ...microRNAs(miRNAs)are a class of small non-coding RNAs,which have been shown important to a wide range of biological process by post-transcriptionally regulating the expression of protein-coding genes.miRNAs have been demonstrated essential to normal cardiac development and function.Recently,numerous studies indicate miRNAs are involved in cardiac regeneration and cardiac disease,including cardiac hypertrophy,myocardial infarction and cardiac arrhythmia.These observations suggest miRNAs play important roles in cardiology.In this review,we summarize the recent progress of studying miRNAs in cardiac regeneration and cardiac disease.We also discuss the diagnostic and therapeutic potential of miRNAs in heart disease.展开更多
文摘This paper describes an in-house developed language tool called VPerl used in developing a 250 MHz 32-bit high-performance low power embedded CPU core. The authors showed that use of this tool can compress the Verilog code by more than a factor of 5, increase the efficiency of the front-end design, reduce the bug rate significantly. This tool can be used to enhance the reusability of an intellectual property model, and facilitate porting design for different platforms.
基金Supported by Funding of the National Institutes of Healththe Juvenile Diabetes Research Foundation+2 种基金the American Diabetes Associationthe Foundation for Diabetes Researchthe Diabetes Research Institute Foundation
文摘If only at a small scale,islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy:the functional replenishment of damaged tissue in patients.After years of less-thanoptimal approaches to immunosuppression,recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation.Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention.Progress in stem cell research over the past decade,coupled with our decades-long experience with islet transplantation,is shaping the future of cell therapies for the treatment of diabetes.Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration,including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.
基金supported by the National High Technology Research and Development Program of China (2011AA020109)the National Basic Research Program of China (2011CB964804)
文摘As a milestone breakthrough of stem cell and regenerative medicine in recent years, somatic cell reprogramming has opened up new applications of regenerative medicine by breaking through the ethical shackles of embryonic stern cells. However, induced pluripo- tent stem (iPS) cells are prepared with a complicated protocol that results in a low reprogramming rate. To obtain differentiated target cells, iPS cells and embryonic stem cells still need to be induced using step-by-step procedures. The safety of induced target cells from iPS cells is currently a further concerning matter. More broadly conceived is lineage reprogramming that has been investigated since 1987. Adult stem cell plasticity, which triggered interest in stem cell research at the end of the last century, can also be included in the scope of lineage reprogramming. With the promotion of iPS cell research, lineage reprogramming is now considered as one of the most promising fields in regenerative medicine, will hopefully lead to customized, personalized therapeutic options for patients in the future.
基金supported by the March of Dimes Foundation(FY11-426)the National Institutes of Health(HL085635)
文摘microRNAs(miRNAs)are a class of small non-coding RNAs,which have been shown important to a wide range of biological process by post-transcriptionally regulating the expression of protein-coding genes.miRNAs have been demonstrated essential to normal cardiac development and function.Recently,numerous studies indicate miRNAs are involved in cardiac regeneration and cardiac disease,including cardiac hypertrophy,myocardial infarction and cardiac arrhythmia.These observations suggest miRNAs play important roles in cardiology.In this review,we summarize the recent progress of studying miRNAs in cardiac regeneration and cardiac disease.We also discuss the diagnostic and therapeutic potential of miRNAs in heart disease.