Grounded ship faces up exceptionally different stability forces unlike in her normal operating condition. This critical situation must be corrected as soon as can minimize hull stress, the risk of pollution and stabil...Grounded ship faces up exceptionally different stability forces unlike in her normal operating condition. This critical situation must be corrected as soon as can minimize hull stress, the risk of pollution and stability failure. Re-floating the ship need full understanding of the impact of ground reaction (R) on the ship buoyancy and stability. Re-floating the ship has different phases and there are several immediate actions that should be taken by ship's crew; one of these phases is re-calculation of ship stability conditions. In this paper, a guide to understanding the effect of the ground reaction (R), determines the amount of ground pressure and its location. With consideration of the seabed form whether symmetric of asymmetric. Calculating the magnitude of the ground reaction (R) using different applicable methods, explaining the effect of using weight to re-float the ship by her own means, focusing on GM calculation after grounding.展开更多
A good knowledge of midfoot biomechanics is important in understanding the biomechanics of the entire foot,but it has never been investigated thoroughly in the literature.This study carried out in vitro experiments an...A good knowledge of midfoot biomechanics is important in understanding the biomechanics of the entire foot,but it has never been investigated thoroughly in the literature.This study carried out in vitro experiments and finite element analysis to investigate the midfoot biomechanics.A foot-ankle finite element model simulating the mid-stance phase of the normal gait was developed and the model validated in in vitro experimental tests.Experiments used seven in vitro samples of fresh human cadavers.The simulation found that the first principal stress peaks of all midfoot bones occurred at the navicular bone and that the tensile force of the spring ligament was greater than that of any other ligament.The experiments showed that the longitudinal strain acting on the medial cuneiform bone was-26.2±10.8μ-strain,and the navicular strain was-240.0±169.1μ-strain along the longitudinal direction and 65.1±25.8μ-strain along the transverse direction.The anatomical position and the spring ligament both result in higher shear stress in the navicular bone.The load from the ankle joint to five branches of the forefoot is redistributed among the cuneiforms and cuboid bones.Further studies on the mechanism of loading redistribution will be helpful in understanding the biomechanics of the entire foot.展开更多
文摘Grounded ship faces up exceptionally different stability forces unlike in her normal operating condition. This critical situation must be corrected as soon as can minimize hull stress, the risk of pollution and stability failure. Re-floating the ship need full understanding of the impact of ground reaction (R) on the ship buoyancy and stability. Re-floating the ship has different phases and there are several immediate actions that should be taken by ship's crew; one of these phases is re-calculation of ship stability conditions. In this paper, a guide to understanding the effect of the ground reaction (R), determines the amount of ground pressure and its location. With consideration of the seabed form whether symmetric of asymmetric. Calculating the magnitude of the ground reaction (R) using different applicable methods, explaining the effect of using weight to re-float the ship by her own means, focusing on GM calculation after grounding.
基金supported by the National Natural Science Foundation of China(11302154,11272273)China Postdoctoral Science Foundation(2013M530211)+1 种基金Opening Project of Shanghai Key Laboratory of Orthopaedic Implants(KFKT2013002)Fundamental Research Funds for the Central Universities
文摘A good knowledge of midfoot biomechanics is important in understanding the biomechanics of the entire foot,but it has never been investigated thoroughly in the literature.This study carried out in vitro experiments and finite element analysis to investigate the midfoot biomechanics.A foot-ankle finite element model simulating the mid-stance phase of the normal gait was developed and the model validated in in vitro experimental tests.Experiments used seven in vitro samples of fresh human cadavers.The simulation found that the first principal stress peaks of all midfoot bones occurred at the navicular bone and that the tensile force of the spring ligament was greater than that of any other ligament.The experiments showed that the longitudinal strain acting on the medial cuneiform bone was-26.2±10.8μ-strain,and the navicular strain was-240.0±169.1μ-strain along the longitudinal direction and 65.1±25.8μ-strain along the transverse direction.The anatomical position and the spring ligament both result in higher shear stress in the navicular bone.The load from the ankle joint to five branches of the forefoot is redistributed among the cuneiforms and cuboid bones.Further studies on the mechanism of loading redistribution will be helpful in understanding the biomechanics of the entire foot.