This paper presents an optimized SRAM that is repairable and dissipates less power. To improve the yield of SRAMs per wafer,redundancy logic and an E-FUSE box are added to the SRAM and an SR SRAM is set up. In order t...This paper presents an optimized SRAM that is repairable and dissipates less power. To improve the yield of SRAMs per wafer,redundancy logic and an E-FUSE box are added to the SRAM and an SR SRAM is set up. In order to reduce power dissipation,power on/off states and isolation logic are introduced into the SR SRAM and an LPSR SRAM is constructed. The optimized LPSR SRAM64K × 32 is used in SoC and the testing method of the LPSR SRAM64K × 32 is also discussed. The SoC design is successfully implemented in the Chartered 90nm CMOS process. The SoC chip occupies 5. 6mm× 5. 6ram of die area and the power dissipation is 1997mW. The test results indicate that LPSR SRAM64K ×32 obtains 17. 301% power savings and the yield of the LPSR SRAM64K × 32s per wafer is improved by 13. 255%.展开更多
The State Transition Equation (STE) based method to automatically generate the parallel CRC circuits for any generator polynomial or required amount of parallelism is presented. The parallel CRC circuit so generate...The State Transition Equation (STE) based method to automatically generate the parallel CRC circuits for any generator polynomial or required amount of parallelism is presented. The parallel CRC circuit so generated is partially optimized before being fed to synthesis tools and works properly in our LAN transceiv-er. Compared with the cascading method, the proposed method gives better timing results and significantly re-duces the synthesis time, in particular.展开更多
This paper proposes a novel dynamic control approach for a cable-driven robot with high redundant actuation and cable tension limitations to perform tracking task while interacting with environment. In order for a cab...This paper proposes a novel dynamic control approach for a cable-driven robot with high redundant actuation and cable tension limitations to perform tracking task while interacting with environment. In order for a cable-driven exoskeleton robot to execute the task smoothly and safely, it is necessary to consider the tracking motion performance as well as passivity when interacting with the environment under the conditions of the actuation cables' redundancy and the pulling limitation. With the additional consideration of the maximum limitation of the cable tension, cable-driven robot actually can only apply a certain range of feasible wrench on the external environment, which makes the task executed by robot be restricted. In order to make designed wrench be feasible and keep the desired trajectory tracking ability, we present a new control method by extending PVFC (passive velocity field control) method considering tracking stability and passivity. The approach augmented a higher dimensional virtual flywheel dynamics in a specific orthogonal complement space of the cable's actuation space. After the final adjustment of the designed wrench with respect to the cable's constraint, this method is capable of driving the cable robot to complete the trajectory tracking task and realize the passivity.展开更多
文摘This paper presents an optimized SRAM that is repairable and dissipates less power. To improve the yield of SRAMs per wafer,redundancy logic and an E-FUSE box are added to the SRAM and an SR SRAM is set up. In order to reduce power dissipation,power on/off states and isolation logic are introduced into the SR SRAM and an LPSR SRAM is constructed. The optimized LPSR SRAM64K × 32 is used in SoC and the testing method of the LPSR SRAM64K × 32 is also discussed. The SoC design is successfully implemented in the Chartered 90nm CMOS process. The SoC chip occupies 5. 6mm× 5. 6ram of die area and the power dissipation is 1997mW. The test results indicate that LPSR SRAM64K ×32 obtains 17. 301% power savings and the yield of the LPSR SRAM64K × 32s per wafer is improved by 13. 255%.
文摘The State Transition Equation (STE) based method to automatically generate the parallel CRC circuits for any generator polynomial or required amount of parallelism is presented. The parallel CRC circuit so generated is partially optimized before being fed to synthesis tools and works properly in our LAN transceiv-er. Compared with the cascading method, the proposed method gives better timing results and significantly re-duces the synthesis time, in particular.
基金This research has been partially supported by National Natural Science Foundation of China under Grant No. 61472117.
文摘This paper proposes a novel dynamic control approach for a cable-driven robot with high redundant actuation and cable tension limitations to perform tracking task while interacting with environment. In order for a cable-driven exoskeleton robot to execute the task smoothly and safely, it is necessary to consider the tracking motion performance as well as passivity when interacting with the environment under the conditions of the actuation cables' redundancy and the pulling limitation. With the additional consideration of the maximum limitation of the cable tension, cable-driven robot actually can only apply a certain range of feasible wrench on the external environment, which makes the task executed by robot be restricted. In order to make designed wrench be feasible and keep the desired trajectory tracking ability, we present a new control method by extending PVFC (passive velocity field control) method considering tracking stability and passivity. The approach augmented a higher dimensional virtual flywheel dynamics in a specific orthogonal complement space of the cable's actuation space. After the final adjustment of the designed wrench with respect to the cable's constraint, this method is capable of driving the cable robot to complete the trajectory tracking task and realize the passivity.