First, two fault tolerant planning algorithms with avoidance of joint static torque limit or joint dynamic torque limit are proposed respectively. The former is suitable for the low-speed manipulators, and the latter ...First, two fault tolerant planning algorithms with avoidance of joint static torque limit or joint dynamic torque limit are proposed respectively. The former is suitable for the low-speed manipulators, and the latter is suitable for the high-speed manipulators. These algorithms not only can insure manipulation tasks to lie within the fault tolerant workspace but also can avoid joint torque limit, and hence can insure a redundant manipulator to be. fault tolerant in both kinematical sense and dynamic sense. Then, the simulation examples for a planar 3R manipulator demonstrate the validity of these algorithms.展开更多
Distributed coordinated control of networked robotic systems formulated by Lagrange dynamics has recently been a subject of considerable interest within science and technology communities due to its broad engineering ...Distributed coordinated control of networked robotic systems formulated by Lagrange dynamics has recently been a subject of considerable interest within science and technology communities due to its broad engineering applications involving complex and integrated production processes,where high flexibility,manipulability,and maneuverability are desirable characteristics.In this paper,we investigate the distributed coordinated adaptive tracking problem of networked redundant robotic systems with a dynamic leader.We provide an analysis procedure for the controlled synchronization of such systems with uncertain dynamics.We also find that the proposed control strategy does not require computing positional inverse kinematics and does not impose any restriction on the self-motion of the manipulators;therefore,the extra degrees of freedom are applicable for other sophisticated subtasks.Compared with some existing work,a distinctive feature of the designed distributed control algorithm is that only a subset of followers needs to access the position information of the dynamic leader in the task space,where the underlying directed graph has a spanning tree.Subsequently,we present a simulation example to verify the effectiveness of the proposed algorithms.展开更多
基金Supported by Beijing Municipal Natural Science Foundation Committee and the High Technology Research and Development Programme of China (No.2003AA404140).
文摘First, two fault tolerant planning algorithms with avoidance of joint static torque limit or joint dynamic torque limit are proposed respectively. The former is suitable for the low-speed manipulators, and the latter is suitable for the high-speed manipulators. These algorithms not only can insure manipulation tasks to lie within the fault tolerant workspace but also can avoid joint torque limit, and hence can insure a redundant manipulator to be. fault tolerant in both kinematical sense and dynamic sense. Then, the simulation examples for a planar 3R manipulator demonstrate the validity of these algorithms.
基金supported by the National Natural Science Foundation of China(Grant Nos.1127219110972129 and 10832006)+1 种基金Specialized Research Foundation for the Doctoral Program of Higher Education(Grant No.200802800015)University Natural Science Research Program of Anhui Province(Grant No.KJ2013B216)
文摘Distributed coordinated control of networked robotic systems formulated by Lagrange dynamics has recently been a subject of considerable interest within science and technology communities due to its broad engineering applications involving complex and integrated production processes,where high flexibility,manipulability,and maneuverability are desirable characteristics.In this paper,we investigate the distributed coordinated adaptive tracking problem of networked redundant robotic systems with a dynamic leader.We provide an analysis procedure for the controlled synchronization of such systems with uncertain dynamics.We also find that the proposed control strategy does not require computing positional inverse kinematics and does not impose any restriction on the self-motion of the manipulators;therefore,the extra degrees of freedom are applicable for other sophisticated subtasks.Compared with some existing work,a distinctive feature of the designed distributed control algorithm is that only a subset of followers needs to access the position information of the dynamic leader in the task space,where the underlying directed graph has a spanning tree.Subsequently,we present a simulation example to verify the effectiveness of the proposed algorithms.