Hydrology plays a dominant role in wetland plant distribution and microbial composition, but few studies explicitly attempted to relate the linkage between wetland vegetation and microbial community. The present study...Hydrology plays a dominant role in wetland plant distribution and microbial composition, but few studies explicitly attempted to relate the linkage between wetland vegetation and microbial community. The present study consisted of five wetland plant communities along three adjacent flood gradients zones(zone 1 dominated by Carex appendiculat, zone 2 dominated by Eleocharis ovate, and zone 3 dominated by Phragmites australis/Bidens pilosa/Calamagrostis angustifolia, which formed separate, monoculture patches). Gram negative and arbuscular mycorrhizal fungal phospholipid fatty acid(PLFA) are more abundant in the site with short flooding period(zone 3) than in the site with long flooding period(zone 1), and they are also different in the P. australis, B. spilosa and C. angustifolia of zone 3. Principle Component Analysis(PCA) showed that the flooding period could explain 92.4% of variance in microbial composition. Redundancy Analysis(RDA) showed that available nitrogen(AN), total nitrogen(TN) and soil organic matter(SOM) could explain the 79.5% of variance in microbial composition among E. ovata, P. australis, B. pilosa and C. angustifolia. Results demonstrated that flooding period was the main factor in driving the microbial composition and plant-derived resources could influence soil microbial composition in the seasonally flooded zones.展开更多
Aims The aims of this study were to assess how functional diversity(FD)and functional redundancy respond to subalpine meadow ecosystem degradation under anthropogenic disturbance and how species contribute to function...Aims The aims of this study were to assess how functional diversity(FD)and functional redundancy respond to subalpine meadow ecosystem degradation under anthropogenic disturbance and how species contribute to functional redundancy along the disturbance gradient.Methods The study was carried out in the subalpine meadow in Mount Jade Dragon,which is located at the southeastern edge of the Tibetan Plateau.Four disturbance intensities[no disturbance(ND),weak disturbance(WD),moderate disturbance(MD)and severe disturbance(SD)]were identified.Species richness,soil properties and five key plant functional traits were assessed along the disturbance gradient.Simpson’s diversity index,FD based on the Rao algorithm,functional redundancy,community-weighted mean of each functional trait and species-level functional redundancy were determined.Important Findings Unimodal change pattern of FD and functional redundancy along the disturbance gradient were found in the present study,with their maximum in MD and WD,respectively.Species diversity showed a decreasing trend with increasing disturbance intensity.As disturbance intensified,species with traits related to conservative growth strategies,such as low specific leaf area(SLA)and high leaf dry matter content(LDMC),decreased,whereas species with resource acquisitive strategies,such as small plant,high SLA and low LDMC,increased in the community.At the species level,species showed species-specific roles in functional redundancy.Notably,some species were important in the community in terms of their unique function.For instance,Ligularia dictyoneura in ND and Potentilla delavayi in MD and SD.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41361015,41271106,41271107,41501105)Open Fund of the State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration,Northeast Normal University(No.130028630)
文摘Hydrology plays a dominant role in wetland plant distribution and microbial composition, but few studies explicitly attempted to relate the linkage between wetland vegetation and microbial community. The present study consisted of five wetland plant communities along three adjacent flood gradients zones(zone 1 dominated by Carex appendiculat, zone 2 dominated by Eleocharis ovate, and zone 3 dominated by Phragmites australis/Bidens pilosa/Calamagrostis angustifolia, which formed separate, monoculture patches). Gram negative and arbuscular mycorrhizal fungal phospholipid fatty acid(PLFA) are more abundant in the site with short flooding period(zone 3) than in the site with long flooding period(zone 1), and they are also different in the P. australis, B. spilosa and C. angustifolia of zone 3. Principle Component Analysis(PCA) showed that the flooding period could explain 92.4% of variance in microbial composition. Redundancy Analysis(RDA) showed that available nitrogen(AN), total nitrogen(TN) and soil organic matter(SOM) could explain the 79.5% of variance in microbial composition among E. ovata, P. australis, B. pilosa and C. angustifolia. Results demonstrated that flooding period was the main factor in driving the microbial composition and plant-derived resources could influence soil microbial composition in the seasonally flooded zones.
基金This work was supported by the National Natural Science Foundation of China(31560181)The Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment,China(2019HJ2096001006).
文摘Aims The aims of this study were to assess how functional diversity(FD)and functional redundancy respond to subalpine meadow ecosystem degradation under anthropogenic disturbance and how species contribute to functional redundancy along the disturbance gradient.Methods The study was carried out in the subalpine meadow in Mount Jade Dragon,which is located at the southeastern edge of the Tibetan Plateau.Four disturbance intensities[no disturbance(ND),weak disturbance(WD),moderate disturbance(MD)and severe disturbance(SD)]were identified.Species richness,soil properties and five key plant functional traits were assessed along the disturbance gradient.Simpson’s diversity index,FD based on the Rao algorithm,functional redundancy,community-weighted mean of each functional trait and species-level functional redundancy were determined.Important Findings Unimodal change pattern of FD and functional redundancy along the disturbance gradient were found in the present study,with their maximum in MD and WD,respectively.Species diversity showed a decreasing trend with increasing disturbance intensity.As disturbance intensified,species with traits related to conservative growth strategies,such as low specific leaf area(SLA)and high leaf dry matter content(LDMC),decreased,whereas species with resource acquisitive strategies,such as small plant,high SLA and low LDMC,increased in the community.At the species level,species showed species-specific roles in functional redundancy.Notably,some species were important in the community in terms of their unique function.For instance,Ligularia dictyoneura in ND and Potentilla delavayi in MD and SD.