The problem of maximizing system reliability through component reliability choices and component redundancy is called tell-ability-redundancy allocation problem (RAP), and it is a difficult but realistic nonlinear m...The problem of maximizing system reliability through component reliability choices and component redundancy is called tell-ability-redundancy allocation problem (RAP), and it is a difficult but realistic nonlinear mixed-integer optimization prob- lem. For the RAP. we pay attention to an improved particle swarm optimization (IPSO), and introduce four hybrid approaches for combining the IPSO with other conventional search techniques, such as harmony search (HS) and LXPM (a real coded GA). The basic structure of the hybrid approaches includes two phases. After devising an initial solution by the HS or LXPM technique in the first phase, the IPSO performs an optimal search in the next phase. In addition, a new procedure by using golden search, named GS, is developed for further improving the solutions obtained by IPSO. Consequently, four ISPO-based hybrid approaches are proposed including HS-IPSO, LXPM-IPSO, HS-IPSO-GS, and LXPM-IPSO-GS. In order to validate the per-formance of proposed approaches, five nonlinear mixed-integer RAPs are investigated where both the number of re- dundancy components and the corresponding component reliability in each subsystem are to be decided simultaneously. As shown, the proposed approaches are all superior in terms of both optimal solutions and robustness to those by IPSO. Especially the pro-posed LXPM-IPSO-GS has shown more excellent performance than other typical approaches in the literature.展开更多
In this paper, the H∞ control problem is investigated for a class of discrete-time switched linear systems with modal persistent dwell-time(MPDT) switching. The redundant channels are considered to use in the data tr...In this paper, the H∞ control problem is investigated for a class of discrete-time switched linear systems with modal persistent dwell-time(MPDT) switching. The redundant channels are considered to use in the data transmission to benefit the capability of overcoming the fragility of networks commonly configured by a single channel in the communication networks subject to random packet losses. In light of a new class of Lyapunov functions, the desired observer-based quasi-time-dependent controllers, which have less conservatism than the time-independent ones, are designed such that the resulting closed-loop system is exponentially mean-square stable with a guaranteed H_∞ disturbance attenuation performance. The MPDT can be minimized while ensuring the existence of such a class of observer-based controllers for a given period of persistence. An example of DC-DC boost converter is provided to verify the effectiveness of theoretical findings.展开更多
基金supported by the National Defense Basic Technology Research Program of China(Grant No.Z312012B001)the National Program on Key Basic Research Project of China("973" Program)(Grant No.2013CB035405)the Combining Production and Research Program of Guangdong Province,China(Grant No.2010A090200009)
文摘The problem of maximizing system reliability through component reliability choices and component redundancy is called tell-ability-redundancy allocation problem (RAP), and it is a difficult but realistic nonlinear mixed-integer optimization prob- lem. For the RAP. we pay attention to an improved particle swarm optimization (IPSO), and introduce four hybrid approaches for combining the IPSO with other conventional search techniques, such as harmony search (HS) and LXPM (a real coded GA). The basic structure of the hybrid approaches includes two phases. After devising an initial solution by the HS or LXPM technique in the first phase, the IPSO performs an optimal search in the next phase. In addition, a new procedure by using golden search, named GS, is developed for further improving the solutions obtained by IPSO. Consequently, four ISPO-based hybrid approaches are proposed including HS-IPSO, LXPM-IPSO, HS-IPSO-GS, and LXPM-IPSO-GS. In order to validate the per-formance of proposed approaches, five nonlinear mixed-integer RAPs are investigated where both the number of re- dundancy components and the corresponding component reliability in each subsystem are to be decided simultaneously. As shown, the proposed approaches are all superior in terms of both optimal solutions and robustness to those by IPSO. Especially the pro-posed LXPM-IPSO-GS has shown more excellent performance than other typical approaches in the literature.
基金supported by the National Natural Science Foundation of China(Grant No.61322301)the Natural Science Foundation of Heilongjiang(Grant Nos.F201417&JC2015015)+1 种基金the Fundamental Research Funds for the Central UniversitiesChina(Grant Nos.HIT.BRETIII.201211&HIT.BRETIV.201306)
文摘In this paper, the H∞ control problem is investigated for a class of discrete-time switched linear systems with modal persistent dwell-time(MPDT) switching. The redundant channels are considered to use in the data transmission to benefit the capability of overcoming the fragility of networks commonly configured by a single channel in the communication networks subject to random packet losses. In light of a new class of Lyapunov functions, the desired observer-based quasi-time-dependent controllers, which have less conservatism than the time-independent ones, are designed such that the resulting closed-loop system is exponentially mean-square stable with a guaranteed H_∞ disturbance attenuation performance. The MPDT can be minimized while ensuring the existence of such a class of observer-based controllers for a given period of persistence. An example of DC-DC boost converter is provided to verify the effectiveness of theoretical findings.