A mini-plot field experiment was conducted on a loamy clay Oxisol to compare and evaluate P absorption and transfer in plant organs and P movement in soil profile at three P application depths under the soybean-citrus...A mini-plot field experiment was conducted on a loamy clay Oxisol to compare and evaluate P absorption and transfer in plant organs and P movement in soil profile at three P application depths under the soybean-citrus intercropping versus the monoculture using a ^32p tracer technique. Total P absorption (Pt) by soybean and P accumulation (Pa) in soybean organs decreased significantly (P 〈 0.05) under the intercropping in contrast to the monoculture. With intercropping, when ^32p was applied in topsoil (15 cm soil layer), total ^32p absorption (^32pt) in soybeans was significantly lower (P 〈 0.05), but when ^32p was applied to deeper soil layers (35 or 55 cm soil layer), ^32pt in soybeans was significantly greater (P 〈 0.05). The percentage of P in leaves to total P (Pa/Pt) and 32p in leaves to total ^32p (^32pa/^32pt) for soybean were ≥ 25% and those of root ≥ 12%. When P was applied ia topsoil and 55 cm soil layer, no significant differences were found between intercropping and monoculture for Pt of citrus. The P absorbed by citrus was transferred rapidly to the growing organs of aboveground during the experiment, and the speed of transferring to the growing organs slowed when P was applied to the deeper soil layers. In intercropping, P mobility was heightened in the soil profile, and P in deeper soil layers moved up to topsoil more rapidly.展开更多
Coffee cultivation by using shade trees is simple of agroforestry, this system could get better ecosystem service and sustainable agricultural. The aims of this research are to study the possibility of some species of...Coffee cultivation by using shade trees is simple of agroforestry, this system could get better ecosystem service and sustainable agricultural. The aims of this research are to study the possibility of some species of industrial woods as shade trees of Coffea canephora. The research was conducted in Jember, Indonesia (45 m asl., D rainfall type according to Schmidt and Ferguson), and arranged in split plot design. The main plots were (A) coffee-T, grandis (3 m × 2.5 m ×12 m), (B) coffee-P, falcataria single row (2.5 m ×6 m), (C) coffee-P, falcataria double rows (3 m× 2.5 m × 12 m), (D) coffee-P, falcataria vat. Solomon (3 m× 2.5 m × 12 m), (E) coffee-M, azedarach (3 m ×5 m ×22.5 m), (F) coffee-H, macrophyllus (3 m ×5 m ×12.5 m), and (G) coffee-Leucaena sp. (3 m × 2.5 m) as control. The sub plots were coffee clones, i.e., BP 534, BP 409, BP 936, dan BP 939. Among those timber trees, Leucaena was planted as the alternative shade trees. The result showed that in comparison with control, all of coffee agroforestry system improved carbon sequestration. Total C-stock on (B) was highest, i.e., 1,007 percent to control while the lowest one was (A) 317.44% to control. During one year observation, litter weight of H. macrophyllus was heaviest followed by T. grandis. The lightest litter was obtained from M. azedarach. Based on its mineral contents, litters of T. grandis potentially supplied back nutrients that equaled to total Urea, SP-36, KC1, Dolomite, and Kieserite as much as 574.14 g; P. falcataria 287.57 g, P. falcataria var. Solomon 453.59 g, M. azedarach 450.84 g, H. macrophyllus 877.56 g, and Leucaena 445.12 g per tree per year. Because of heavily fallen leaves of M. azedarach during dry season and conversely too dense shading of H. macrophyllus, bean yield at 4 and 5 years old by using both species were consistently lower than that under T. grandis, P. falcataria and control. At those ages, effect of clone on cherry yield was still not consistent but there was a tendency that BP 939 was most productive, while BP 534 was the less. Its outturn was not influenced by agroforestry system but by clones. The agroforestry pattern influence physical bean characters, more dense of shading, more single bean and empty bean. That bean abnormality also genetically, on BP 939 percentage of round and empty bean was highest while on BP 936 was lowest. It was concluded that coffee agroforestry improve ecology service, but M. azedarach and H. macrophyllus were not appropriate to be used as coffee shade trees. P. falcataria is recommended as an alternative shade tree beside Leucaena sp.展开更多
As one kind of land use practice, traditional agroforestry systems already have a long history of hundreds of years in practice and still play a significant role in the world today, especially in tropical and sub-trop...As one kind of land use practice, traditional agroforestry systems already have a long history of hundreds of years in practice and still play a significant role in the world today, especially in tropical and sub-tropical areas. In this era of globalization and food in security, more and more governments and non-governmental organizations are paying attention to traditional agroforestry systems because of their economic, ecological and socio-culture beneifts. These beneifts are also in accord with the characteristics of Globaly Important Agricultural Heritage Systems (GIAHS). So far, four typical traditional agroforestry systems from five countries have been designated as GIAHS. These traditional agroforestry systems have rich agricultural and associated biodiversity, multiple ecosystem services and precious socio-culture values at a regional and global level. Although traditional agroforestry systems are confronted with many threats and challenges, such as population growth, migration, market impact, climate change and so on, as long as governments and non-governmental organizations, local communities and smallholders can cooperate with each other, traditional agroforestry systems will be effectively protected and wil remain in the future a sustainable global land use practice.展开更多
Eco-agriculture is the principal measure for addressing the environmental issues caused by agriculture and an essential direction for agriculture in the future. Meanwhile, the development of eco-agriculture is insepar...Eco-agriculture is the principal measure for addressing the environmental issues caused by agriculture and an essential direction for agriculture in the future. Meanwhile, the development of eco-agriculture is inseparable from its technical support. At present, the eco-agricultural technologies commonly used in China can be divided into three categories according to their theoretical basis and practical types: the technologies used to realize the precision input of material resources, the technologies used to improve material circulation efficiency, and the technologies that use the principle of species symbiosis. Although these technologies provide essential support for developing eco-agriculture in China, there are also problems associated with their implementation, such as poor technical application and a low level of industrialization. Therefore, in the future development of eco-agriculture technology in China, the technologies producers should take the actual problems as guide and pay attention to the popularization, industrialization, and application of the technologies.展开更多
基金Project supported by the Knowledge Innovation Programme of the Chinese Academy of Sciences (No. KZCX2-407).
文摘A mini-plot field experiment was conducted on a loamy clay Oxisol to compare and evaluate P absorption and transfer in plant organs and P movement in soil profile at three P application depths under the soybean-citrus intercropping versus the monoculture using a ^32p tracer technique. Total P absorption (Pt) by soybean and P accumulation (Pa) in soybean organs decreased significantly (P 〈 0.05) under the intercropping in contrast to the monoculture. With intercropping, when ^32p was applied in topsoil (15 cm soil layer), total ^32p absorption (^32pt) in soybeans was significantly lower (P 〈 0.05), but when ^32p was applied to deeper soil layers (35 or 55 cm soil layer), ^32pt in soybeans was significantly greater (P 〈 0.05). The percentage of P in leaves to total P (Pa/Pt) and 32p in leaves to total ^32p (^32pa/^32pt) for soybean were ≥ 25% and those of root ≥ 12%. When P was applied ia topsoil and 55 cm soil layer, no significant differences were found between intercropping and monoculture for Pt of citrus. The P absorbed by citrus was transferred rapidly to the growing organs of aboveground during the experiment, and the speed of transferring to the growing organs slowed when P was applied to the deeper soil layers. In intercropping, P mobility was heightened in the soil profile, and P in deeper soil layers moved up to topsoil more rapidly.
文摘Coffee cultivation by using shade trees is simple of agroforestry, this system could get better ecosystem service and sustainable agricultural. The aims of this research are to study the possibility of some species of industrial woods as shade trees of Coffea canephora. The research was conducted in Jember, Indonesia (45 m asl., D rainfall type according to Schmidt and Ferguson), and arranged in split plot design. The main plots were (A) coffee-T, grandis (3 m × 2.5 m ×12 m), (B) coffee-P, falcataria single row (2.5 m ×6 m), (C) coffee-P, falcataria double rows (3 m× 2.5 m × 12 m), (D) coffee-P, falcataria vat. Solomon (3 m× 2.5 m × 12 m), (E) coffee-M, azedarach (3 m ×5 m ×22.5 m), (F) coffee-H, macrophyllus (3 m ×5 m ×12.5 m), and (G) coffee-Leucaena sp. (3 m × 2.5 m) as control. The sub plots were coffee clones, i.e., BP 534, BP 409, BP 936, dan BP 939. Among those timber trees, Leucaena was planted as the alternative shade trees. The result showed that in comparison with control, all of coffee agroforestry system improved carbon sequestration. Total C-stock on (B) was highest, i.e., 1,007 percent to control while the lowest one was (A) 317.44% to control. During one year observation, litter weight of H. macrophyllus was heaviest followed by T. grandis. The lightest litter was obtained from M. azedarach. Based on its mineral contents, litters of T. grandis potentially supplied back nutrients that equaled to total Urea, SP-36, KC1, Dolomite, and Kieserite as much as 574.14 g; P. falcataria 287.57 g, P. falcataria var. Solomon 453.59 g, M. azedarach 450.84 g, H. macrophyllus 877.56 g, and Leucaena 445.12 g per tree per year. Because of heavily fallen leaves of M. azedarach during dry season and conversely too dense shading of H. macrophyllus, bean yield at 4 and 5 years old by using both species were consistently lower than that under T. grandis, P. falcataria and control. At those ages, effect of clone on cherry yield was still not consistent but there was a tendency that BP 939 was most productive, while BP 534 was the less. Its outturn was not influenced by agroforestry system but by clones. The agroforestry pattern influence physical bean characters, more dense of shading, more single bean and empty bean. That bean abnormality also genetically, on BP 939 percentage of round and empty bean was highest while on BP 936 was lowest. It was concluded that coffee agroforestry improve ecology service, but M. azedarach and H. macrophyllus were not appropriate to be used as coffee shade trees. P. falcataria is recommended as an alternative shade tree beside Leucaena sp.
基金Research on soft science of forestry(2014-R05)Consulting Project of the Chinese Academy of Engineering(2013-XZ-22)Chinese Academy of Sciences Visiting Professorship for Senior International Scientists(2013T2Z0011)
文摘As one kind of land use practice, traditional agroforestry systems already have a long history of hundreds of years in practice and still play a significant role in the world today, especially in tropical and sub-tropical areas. In this era of globalization and food in security, more and more governments and non-governmental organizations are paying attention to traditional agroforestry systems because of their economic, ecological and socio-culture beneifts. These beneifts are also in accord with the characteristics of Globaly Important Agricultural Heritage Systems (GIAHS). So far, four typical traditional agroforestry systems from five countries have been designated as GIAHS. These traditional agroforestry systems have rich agricultural and associated biodiversity, multiple ecosystem services and precious socio-culture values at a regional and global level. Although traditional agroforestry systems are confronted with many threats and challenges, such as population growth, migration, market impact, climate change and so on, as long as governments and non-governmental organizations, local communities and smallholders can cooperate with each other, traditional agroforestry systems will be effectively protected and wil remain in the future a sustainable global land use practice.
基金The Consulting Research Project of Chinese Academy of Engineering(2021-XBZD-8).
文摘Eco-agriculture is the principal measure for addressing the environmental issues caused by agriculture and an essential direction for agriculture in the future. Meanwhile, the development of eco-agriculture is inseparable from its technical support. At present, the eco-agricultural technologies commonly used in China can be divided into three categories according to their theoretical basis and practical types: the technologies used to realize the precision input of material resources, the technologies used to improve material circulation efficiency, and the technologies that use the principle of species symbiosis. Although these technologies provide essential support for developing eco-agriculture in China, there are also problems associated with their implementation, such as poor technical application and a low level of industrialization. Therefore, in the future development of eco-agriculture technology in China, the technologies producers should take the actual problems as guide and pay attention to the popularization, industrialization, and application of the technologies.