As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in ...As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in externally agricultural non-point source pollution is considered as the biggest barrier for controlling external pollution.In this research,the Jian lake plateau Zizania latifolia wetland lakefront zone was selected for agricultural non-point source pollutions control with the systematic field research,and the lakefront zone was approved to have an effective purification effect on nitrogen and phosphorus from Jinlong River; the theoretical mechanism of lakefront zone removing nutrient was also investigated.Z.latifolia wetland lakefront zone could remove nitrogen and phosphorus from Jinlong River and the removal ratio can reach 55.8-62.52% and 59.47-69.81% respectively.So,we can indicate that the Jian Lake plateau Z.latifolia wetland lakefront zone had a good effect on controlling agricultural non-point source pollution and protecting the environment.展开更多
The development of modern agriculture has resulted in much homogenization of the landscape consisting of large patches of farmland,so small remnant non-crop habitats especially linear corridors play an important role ...The development of modern agriculture has resulted in much homogenization of the landscape consisting of large patches of farmland,so small remnant non-crop habitats especially linear corridors play an important role in the conservation of species and the maintenance of ecosystem functions.However,little attention has been paid to the effects of corridors structural characteristics on the plant species restricted to such habitats.In this study,we selected three types of corridors including ditch,hedgerow and road,and analyzed their structural characteristics.The plant species presented in these corridors were investigated,and the species diversity,abundance and frequency were estimated.Moreover,spatial arrangements of corridors were classified into different types to discuss whether there were significant effects of corridor network on plant distribution.The results show that three types of corridors have different effects on plant species composition and diversity.The one-one combined corridor networks and total network associated by three corridors have more complex structural features than each single type of corridor.However,there is no strong correlation between the corridor networks with their plant species.We suggest that carrying out a pointed vegetation survey at corridor intersections to further test the relationships between structural features of corridor and plants is necessary.展开更多
The rice-wheat rotation in southern China is characterized by frequent flooding-draining water regime and heavy nitrogen(N)fertilization. There is a substantial lack of studies into the behavior of dissolved organic n...The rice-wheat rotation in southern China is characterized by frequent flooding-draining water regime and heavy nitrogen(N)fertilization. There is a substantial lack of studies into the behavior of dissolved organic nitrogen(DON) in the intensively managed agroecosystem. A 3-year in situ field experiment was conducted to determine DON leaching and its seasonal and yearly variations as affected by fertilization, irrigation and precipitation over 6 consecutive rice/wheat seasons. Under the conventional N practice(300kg N ha-1for rice and 200 kg N ha-1for wheat), the seasonal average DON concentrations in leachate(100 cm soil depth) for the three rice and wheat seasons were 0.6–1.1 and 0.1–2.3 mg N L-1, respectively. The cumulative DON leaching was estimated to be1.1–2.3 kg N ha-1for the rice seasons and 0.01–1.3 kg N ha-1for the wheat seasons, with an annual total of 1.1–3.6 kg N ha-1. In the rice seasons, N fertilizer had little effect(P > 0.05) on DON leaching; precipitation and irrigation imported 3.6–9.1 kg N ha-1of DON, which may thus conceal the fertilization effect on DON. In the wheat seasons, N fertilization had a positive effect(P < 0.01)on DON. Nevertheless, this promotive effect was strongly influenced by variable precipitation, which also carried 1.8–2.9 kg N ha-1of DON into fields. Despite a very small proportion to chemical N applied and large variations driven by water regime, DON leaching is necessarily involved in the integrated field N budget in the rice-wheat rotation due to its relatively greater amount compared to other natural ecosystems.展开更多
基金Supported by National Key Basic Research Development Plan(973) Early Special Item(2008CB41720)Yunnan Application Basic Research Apparent Project (2009ZC083M)+1 种基金Yunnan Technological Plan Project (2008CA006)Apparent Fund Project of South West Forestry University (200804M)~~
文摘As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in externally agricultural non-point source pollution is considered as the biggest barrier for controlling external pollution.In this research,the Jian lake plateau Zizania latifolia wetland lakefront zone was selected for agricultural non-point source pollutions control with the systematic field research,and the lakefront zone was approved to have an effective purification effect on nitrogen and phosphorus from Jinlong River; the theoretical mechanism of lakefront zone removing nutrient was also investigated.Z.latifolia wetland lakefront zone could remove nitrogen and phosphorus from Jinlong River and the removal ratio can reach 55.8-62.52% and 59.47-69.81% respectively.So,we can indicate that the Jian Lake plateau Z.latifolia wetland lakefront zone had a good effect on controlling agricultural non-point source pollution and protecting the environment.
基金Under the auspices of National Natural Science Foundation of China(No.41071118)
文摘The development of modern agriculture has resulted in much homogenization of the landscape consisting of large patches of farmland,so small remnant non-crop habitats especially linear corridors play an important role in the conservation of species and the maintenance of ecosystem functions.However,little attention has been paid to the effects of corridors structural characteristics on the plant species restricted to such habitats.In this study,we selected three types of corridors including ditch,hedgerow and road,and analyzed their structural characteristics.The plant species presented in these corridors were investigated,and the species diversity,abundance and frequency were estimated.Moreover,spatial arrangements of corridors were classified into different types to discuss whether there were significant effects of corridor network on plant distribution.The results show that three types of corridors have different effects on plant species composition and diversity.The one-one combined corridor networks and total network associated by three corridors have more complex structural features than each single type of corridor.However,there is no strong correlation between the corridor networks with their plant species.We suggest that carrying out a pointed vegetation survey at corridor intersections to further test the relationships between structural features of corridor and plants is necessary.
基金supported by the Jiangsu Provincial Natural Science Foundation of China(No.BK-2010612)the Foundation of State Key Laboratory of Soil and Sustainable Agriculture,China(No.Y05-2010034)the National Natural Science Foundation of China(No.41001147)
文摘The rice-wheat rotation in southern China is characterized by frequent flooding-draining water regime and heavy nitrogen(N)fertilization. There is a substantial lack of studies into the behavior of dissolved organic nitrogen(DON) in the intensively managed agroecosystem. A 3-year in situ field experiment was conducted to determine DON leaching and its seasonal and yearly variations as affected by fertilization, irrigation and precipitation over 6 consecutive rice/wheat seasons. Under the conventional N practice(300kg N ha-1for rice and 200 kg N ha-1for wheat), the seasonal average DON concentrations in leachate(100 cm soil depth) for the three rice and wheat seasons were 0.6–1.1 and 0.1–2.3 mg N L-1, respectively. The cumulative DON leaching was estimated to be1.1–2.3 kg N ha-1for the rice seasons and 0.01–1.3 kg N ha-1for the wheat seasons, with an annual total of 1.1–3.6 kg N ha-1. In the rice seasons, N fertilizer had little effect(P > 0.05) on DON leaching; precipitation and irrigation imported 3.6–9.1 kg N ha-1of DON, which may thus conceal the fertilization effect on DON. In the wheat seasons, N fertilization had a positive effect(P < 0.01)on DON. Nevertheless, this promotive effect was strongly influenced by variable precipitation, which also carried 1.8–2.9 kg N ha-1of DON into fields. Despite a very small proportion to chemical N applied and large variations driven by water regime, DON leaching is necessarily involved in the integrated field N budget in the rice-wheat rotation due to its relatively greater amount compared to other natural ecosystems.