Agricultural systems in Thailand's northeastern mountains are described in terms of their type of crops, marketing channels, and labor requirements. Five distinctive systems are identified: The Field crop system, ...Agricultural systems in Thailand's northeastern mountains are described in terms of their type of crops, marketing channels, and labor requirements. Five distinctive systems are identified: The Field crop system, Fruit tree system, Industrial tree plantation system, Specialty crop system and Agro-tourism system. The different systems are compared with each other in order to identify their respective strengths and weaknesses as development models. The Field crop system covers the largest area of agricultural land and is found in all mountainous villages but it generates very low net profits per hectare. The Specialty crop system and Agro-tourism system generate very high net profits per hectare but cover only a small land area and have a restricted spatial distribution. Expansion of these high value systems may be limited because they are capital and labor intensive and require highly skilled farmers to manage them successfully. If these constraints can be overcome, they may offer a useful model for mountain agricultural development.展开更多
This study explores the role of a traditional tillage method,i.e.,compensatory hoeing,for sustainable agro-ecosystem management in the hilly areas of the Chongqing municipality,south-western China.To validate the effe...This study explores the role of a traditional tillage method,i.e.,compensatory hoeing,for sustainable agro-ecosystem management in the hilly areas of the Chongqing municipality,south-western China.To validate the effects of compensatory tillage on the terraced slopes,the tillage method of noncompensatory hoeing was conducted on a linear slope.To acquire information about 137 Cs inventories and soil texture,soil samples were collected by a core sampler with a 6.8-cm diameter at 5.0-m intervals along the toposequence and the linear slope in the dry season(March) of 2007.Meanwhile,a tillage erosion model was used for evaluating the spatial pattern of tillage erosion.The 137 Cs data showed that on the terraced slope,soil was lost from the upper slope,and soil deposition occurred at the toe slope positions on each terrace.As a result,abrupt changes in the 137 Cs inventories of soil were found over short distances between two sides of terrace boundaries.Results obtained from the tillage erosion model and the 137 Cs data indicate that soil redistribution mainly results from tillage erosion in the terraced landscape.Consecutive non-compensatory tillage caused soil redistribution on the linear slope,resulting in thin soil profile disappearing at the top and soil accumulating at the bottom positions of the linear slope.This result further validates that compensatory tillage could avoid the complete erosion of the thin soil layer at the summit position.Therefore,this traditional tillage.method,i.e.,compensatory tillage,has maintained the soil quality at the summit of the slope in the past decades.展开更多
Precision Agriculture, also known as Precision Farming, or Prescription Farming, is a modern agriculture technology system, which brings ' precision' into agriculture system. All concepts of Precision Agricult...Precision Agriculture, also known as Precision Farming, or Prescription Farming, is a modern agriculture technology system, which brings ' precision' into agriculture system. All concepts of Precision Agriculture are established on the collection and management of variable cropland information. As the tool of collecting, managing and analyzing spatial data, GIS is the key technology of integrated Precision Agriculture system. This article puts forward the concept of Farmland GIS and designs Farmland GIS into five modules, and specifies the functions of the each module, which builds the foundation for practical development of the software. The study and development of Farmland GIS will propel the spreading of Precision Agriculture technology in China.展开更多
基金supported by a scholarship under the Post-doctoral Program from Research Affairs and Graduate School, Khon Kaen University (58227)funded by a fellowship from the Royal Golden Jubilee Ph.D.Program of the Thailand Research Fund (TRF)+1 种基金a grant from the Division of Research Administration, Khon Kaen Universityprovided by a Thailand Research Fund Basic Research grant (BRG 5680008)
文摘Agricultural systems in Thailand's northeastern mountains are described in terms of their type of crops, marketing channels, and labor requirements. Five distinctive systems are identified: The Field crop system, Fruit tree system, Industrial tree plantation system, Specialty crop system and Agro-tourism system. The different systems are compared with each other in order to identify their respective strengths and weaknesses as development models. The Field crop system covers the largest area of agricultural land and is found in all mountainous villages but it generates very low net profits per hectare. The Specialty crop system and Agro-tourism system generate very high net profits per hectare but cover only a small land area and have a restricted spatial distribution. Expansion of these high value systems may be limited because they are capital and labor intensive and require highly skilled farmers to manage them successfully. If these constraints can be overcome, they may offer a useful model for mountain agricultural development.
基金provided by the Special Support Foundation of the Institute of Mountain Hazards and Environment (IMHE)the 100 Talents Programme of IMHE,Chinese Academy of Sciences (No. SDSQB-2011-01)
文摘This study explores the role of a traditional tillage method,i.e.,compensatory hoeing,for sustainable agro-ecosystem management in the hilly areas of the Chongqing municipality,south-western China.To validate the effects of compensatory tillage on the terraced slopes,the tillage method of noncompensatory hoeing was conducted on a linear slope.To acquire information about 137 Cs inventories and soil texture,soil samples were collected by a core sampler with a 6.8-cm diameter at 5.0-m intervals along the toposequence and the linear slope in the dry season(March) of 2007.Meanwhile,a tillage erosion model was used for evaluating the spatial pattern of tillage erosion.The 137 Cs data showed that on the terraced slope,soil was lost from the upper slope,and soil deposition occurred at the toe slope positions on each terrace.As a result,abrupt changes in the 137 Cs inventories of soil were found over short distances between two sides of terrace boundaries.Results obtained from the tillage erosion model and the 137 Cs data indicate that soil redistribution mainly results from tillage erosion in the terraced landscape.Consecutive non-compensatory tillage caused soil redistribution on the linear slope,resulting in thin soil profile disappearing at the top and soil accumulating at the bottom positions of the linear slope.This result further validates that compensatory tillage could avoid the complete erosion of the thin soil layer at the summit position.Therefore,this traditional tillage.method,i.e.,compensatory tillage,has maintained the soil quality at the summit of the slope in the past decades.
基金the Knowledge Innovation Project of the Chinese Academy of Sciences(No.NZCX2-412).
文摘Precision Agriculture, also known as Precision Farming, or Prescription Farming, is a modern agriculture technology system, which brings ' precision' into agriculture system. All concepts of Precision Agriculture are established on the collection and management of variable cropland information. As the tool of collecting, managing and analyzing spatial data, GIS is the key technology of integrated Precision Agriculture system. This article puts forward the concept of Farmland GIS and designs Farmland GIS into five modules, and specifies the functions of the each module, which builds the foundation for practical development of the software. The study and development of Farmland GIS will propel the spreading of Precision Agriculture technology in China.