-
题名改进YOLOv5的苹果花生长状态检测方法
被引量:38
- 1
-
-
作者
杨其晟
李文宽
杨晓峰
岳琳茜
李海芳
-
机构
太原理工大学信息与计算机学院
-
出处
《计算机工程与应用》
CSCD
北大核心
2022年第4期237-246,共10页
-
基金
国家自然科学基金(61976150)
山西省重点研发计划(201803D31038)
山西省晋中市科技重点研发计划(Y192006)。
-
文摘
针对现有目标检测算法难以在果园复杂环境下对苹果花朵生长状态进行高精度检测的问题,提出一种改进YOLOv5的苹果花朵生长状态检测方法,对花蕾、半开、全开、凋落四类苹果树开花期花朵生长状态进行检测。该方法对跨阶段局部网络模块进行改进,并调整模块数量,结合协同注意力模块设计主干网络,提高模型检测性能并减少参数。结合新的检测尺度与基于拆分的卷积运算设计特征融合网络,提升网络特征融合能力。选用CIoU作为边框回归的损失函数实现高精度的定位。将改进算法与原始YOLOv5算法在自建数据集上进行对比实验,结果表明,改进算法mAP达到0.922,比YOLOv5提高5.4个百分点,与其他主流算法相比检测精度有较大提升,证明了算法的有效性。
-
关键词
YOLOv5
农业自动监测
特征融合
目标检测
-
Keywords
YOLOv5
agricultural automatic monitoring
feature fusion
object detection
-
分类号
TP391.41
[自动化与计算机技术—计算机应用技术]
-