期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于BERT-Attention-DenseBiGRU的农业问答社区问句相似度匹配 被引量:7
1
作者 王郝日钦 王晓敏 +3 位作者 缪祎晟 许童羽 刘志超 吴华瑞 《农业机械学报》 EI CAS CSCD 北大核心 2022年第1期244-252,共9页
为了解决问答社区中相同语义问句文本的快速自动检测,提出一种基于BERT的Attention-DenseBiGRU农业问句相似度匹配模型。针对农业文本具备的特征,采用12层的中文BERT文本预训练模型对文本数据进行向量化处理,并与Word2Vec、Glove、TF-ID... 为了解决问答社区中相同语义问句文本的快速自动检测,提出一种基于BERT的Attention-DenseBiGRU农业问句相似度匹配模型。针对农业文本具备的特征,采用12层的中文BERT文本预训练模型对文本数据进行向量化处理,并与Word2Vec、Glove、TF-IDF方法进行对比分析,得出BERT方法能够有效地解决农业文本的高维性和稀疏性问题,并且解决多义词在不同语境下具有不同含义的问题。该网络的每一层都使用注意特征的连接信息以及前面所有递归层的隐藏特征,为了缓解由于密集拼接而导致特征向量尺寸不断增大的问题,在模型的最后使用自动编码器进行特征降维。试验结果表明:基于BERT的Attention-DenseBiGRU农业问句相似度匹配模型可以提高文本特征的利用率,减少特征丢失,能够实现快速及准确的农业问句文本相似度匹配,在本文所构建的农业问句相似对数据集上精确率及F1值达到97.2%和97.6%,与其他6种问句相似度匹配模型相比,效果提升明显。 展开更多
关键词 问答社区 农业问句相似度匹配 自然语言处理 密集连接BiGRU 协同注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部