在对奇异值分解(singular value decomposition,SVD)去噪基本原理深入分析的基础上,结合小波变换提出了一种农作物图像小波域改进自适应SVD去噪算法。本研究所用算法首先对农作物噪声图像进行3层小波变换,保留低频子图像不变;然后对于...在对奇异值分解(singular value decomposition,SVD)去噪基本原理深入分析的基础上,结合小波变换提出了一种农作物图像小波域改进自适应SVD去噪算法。本研究所用算法首先对农作物噪声图像进行3层小波变换,保留低频子图像不变;然后对于水平、垂直、对角方向分布的高频子图像采用改进的自适应SVD算法进行噪声滤除;最后进行小波系数重构。为了有效测试该算法性能,实地拍摄2幅某温室大棚农作物图像作为测试图像,分别将本研究所用算法、SVD算法以及改进过的SVD算法进行去噪性能比较,引入峰值信噪比(Peak signal to noise ratio,PSNR)对几类算法的去噪结果进行定量评价。结果表明,本研究所用算法性能优于另外2种算法,这为农作物噪声图像的处理提供了一种较有效的方法。展开更多
文摘在对奇异值分解(singular value decomposition,SVD)去噪基本原理深入分析的基础上,结合小波变换提出了一种农作物图像小波域改进自适应SVD去噪算法。本研究所用算法首先对农作物噪声图像进行3层小波变换,保留低频子图像不变;然后对于水平、垂直、对角方向分布的高频子图像采用改进的自适应SVD算法进行噪声滤除;最后进行小波系数重构。为了有效测试该算法性能,实地拍摄2幅某温室大棚农作物图像作为测试图像,分别将本研究所用算法、SVD算法以及改进过的SVD算法进行去噪性能比较,引入峰值信噪比(Peak signal to noise ratio,PSNR)对几类算法的去噪结果进行定量评价。结果表明,本研究所用算法性能优于另外2种算法,这为农作物噪声图像的处理提供了一种较有效的方法。