The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenya...The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenyang Experimental Station of Ecology, Chinese Academy of Sciences in November of 2003. The results showed that different land uses had different profile distributions of soil total nitrogen (STN), alkali N, ammonium (NH4+-N) and nitrate (NO3--N). The sequence of STN storage was woodland >maize field > fallow field > paddy field, while that of NO3--N content was maize field > paddy field > woodland > fallow field, suggesting the different root biomass and biological N cycling under various land uses. The STN storage in the depth of 0-100 cm of woodland averaged to 11.41 thm-1, being 1.65 and 1.25 times as much as that in paddy and maize fields, respec-tively, while there was no significant difference between maize and fallow fields. The comparatively higher amount of NO3--N in maize and paddy fields may be due to nitrogen fertilization and anthropogenic disturbance. Soil alkali N was significantly related with STN, and the correlation could be expressed by a linear regression model under each land use (R20.929, p<0.001). Such a correlation was slightly closer in nature (woodland and fallow field) than in agro ecosystems (paddy and maize fields). Heavy N fertilization induced an excess of crop need, and led to a comparatively higher amount of soil NO3--N in cultivated fields than in fallow field and woodland. It is suggested that agroforestry practices have the potential to make a significant contribution to both crop production and environment protection.展开更多
【Title】【Author】【Addresses】1The tree root distribution pattern and biomass of seventeen year old trees of Grewia optiva, Morus alba, Celtis australis, Bauhinia variegata and Robinia pseudoacacia were studied by e...【Title】【Author】【Addresses】1The tree root distribution pattern and biomass of seventeen year old trees of Grewia optiva, Morus alba, Celtis australis, Bauhinia variegata and Robinia pseudoacacia were studied by excavation method. B. variegata roots penetrated to a maximum depth of 4.78 m, whereas, M. alba roots were found down to 1.48 m depth. Lateral spread was minimum in B. variegata (1.10 m)and maximum inR. pseudoacacia (7.33 m). Maximum root biomass of 6.30 kg was found in R. pseudoacacia and minimum (2.43 kg) was found in M. alba. For four species viz.,G. optiva, M. alba, C. australis andR. pseudoacacia, 68%-87% root biomass occurred within top 0-30 cm soil depth, but forB. variegata this was only45%. The soil binding factor was maximum in G. optiva and minimum in B. variegata. Soil physico-chemical properties also showed wide variation. The study suggests thatB. variegata with a deep root system is the most suitable species for plantation under agroforestry systems. R. pseudoacacia and G. optiva with deep root systems, more lateral spread and high soil binding factor are suitable for plantation on degraded lands for soil conservation.展开更多
文摘The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenyang Experimental Station of Ecology, Chinese Academy of Sciences in November of 2003. The results showed that different land uses had different profile distributions of soil total nitrogen (STN), alkali N, ammonium (NH4+-N) and nitrate (NO3--N). The sequence of STN storage was woodland >maize field > fallow field > paddy field, while that of NO3--N content was maize field > paddy field > woodland > fallow field, suggesting the different root biomass and biological N cycling under various land uses. The STN storage in the depth of 0-100 cm of woodland averaged to 11.41 thm-1, being 1.65 and 1.25 times as much as that in paddy and maize fields, respec-tively, while there was no significant difference between maize and fallow fields. The comparatively higher amount of NO3--N in maize and paddy fields may be due to nitrogen fertilization and anthropogenic disturbance. Soil alkali N was significantly related with STN, and the correlation could be expressed by a linear regression model under each land use (R20.929, p<0.001). Such a correlation was slightly closer in nature (woodland and fallow field) than in agro ecosystems (paddy and maize fields). Heavy N fertilization induced an excess of crop need, and led to a comparatively higher amount of soil NO3--N in cultivated fields than in fallow field and woodland. It is suggested that agroforestry practices have the potential to make a significant contribution to both crop production and environment protection.
基金Indian Council of Agriculture Research, New Delhi for supporting the study through All India Coordinated Research Project on Agroforestry (AICRP)
文摘【Title】【Author】【Addresses】1The tree root distribution pattern and biomass of seventeen year old trees of Grewia optiva, Morus alba, Celtis australis, Bauhinia variegata and Robinia pseudoacacia were studied by excavation method. B. variegata roots penetrated to a maximum depth of 4.78 m, whereas, M. alba roots were found down to 1.48 m depth. Lateral spread was minimum in B. variegata (1.10 m)and maximum inR. pseudoacacia (7.33 m). Maximum root biomass of 6.30 kg was found in R. pseudoacacia and minimum (2.43 kg) was found in M. alba. For four species viz.,G. optiva, M. alba, C. australis andR. pseudoacacia, 68%-87% root biomass occurred within top 0-30 cm soil depth, but forB. variegata this was only45%. The soil binding factor was maximum in G. optiva and minimum in B. variegata. Soil physico-chemical properties also showed wide variation. The study suggests thatB. variegata with a deep root system is the most suitable species for plantation under agroforestry systems. R. pseudoacacia and G. optiva with deep root systems, more lateral spread and high soil binding factor are suitable for plantation on degraded lands for soil conservation.