期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于无人机多光谱影像的柑橘冠层叶绿素含量反演 被引量:13
1
作者 罗小波 谢天授 董圣贤 《农业机械学报》 EI CAS CSCD 北大核心 2023年第4期198-205,共8页
叶绿素是一种反映植物生长水平和健康状况的重要生理生化指标,为快速、无损地大规模获取柑橘冠层的叶绿素含量以精确指导果园管理,利用多旋翼无人机搭载多光谱传感器获取多波段反射率数据,使用多光谱阴影指数对冠层阴影和土壤背景进行剔... 叶绿素是一种反映植物生长水平和健康状况的重要生理生化指标,为快速、无损地大规模获取柑橘冠层的叶绿素含量以精确指导果园管理,利用多旋翼无人机搭载多光谱传感器获取多波段反射率数据,使用多光谱阴影指数对冠层阴影和土壤背景进行剔除,计算得到植被指数与纹理特征,将地面实测的叶绿素含量作为验证,综合对比了全子集回归、偏最小二乘回归和深层神经网络的反演精度以选取最优模型。结果表明,植被指数与叶绿素含量的相关性良好;将仅使用植被指数与仅使用纹理特征的建模结果进行对比,仅使用纹理特征的模型在全子集回归和偏最小二乘回归的反演精度均有明显提升;结合植被指数与纹理特征共同建模后,全子集回归和偏最小二乘回归的反演精度相比仅使用纹理特征的模型均能获得提升;深层神经网络因其良好的非线性拟合能力,获得了最高的反演精度,R^(2)、MAE、RMSE分别为0.665、7.69 mg/m^(2)、9.49 mg/m^(2),成为本文最优模型。本研究利用无人机多光谱影像反演得到柑橘冠层叶绿素含量,为实现柑橘生长监测提供指导作用。 展开更多
关键词 柑橘 叶绿素 无人机 多光谱遥感 神经网络 冠层阴影
下载PDF
基于无人机影像阴影去除的苹果树冠层氮素含量遥感反演 被引量:11
2
作者 李美炫 朱西存 +3 位作者 白雪源 彭玉凤 田中宇 姜远茂 《中国农业科学》 CAS CSCD 北大核心 2021年第10期2084-2094,共11页
【目的】去除无人机多光谱遥感影像中的阴影,以提高苹果树冠层氮素含量反演模型精度。【方法】以山东省栖霞市苹果园为试验区,利用2019年6月采集的无人机多光谱影像,分别基于归一化阴影指数(normalized shaded vegetation index,NSVI)... 【目的】去除无人机多光谱遥感影像中的阴影,以提高苹果树冠层氮素含量反演模型精度。【方法】以山东省栖霞市苹果园为试验区,利用2019年6月采集的无人机多光谱影像,分别基于归一化阴影指数(normalized shaded vegetation index,NSVI)和归一化冠层阴影指数(normalized difference canopy shadow index,NDCSI)去除果树冠层多光谱影像中的阴影,提取非阴影区域果树冠层光谱信息;通过相关性分析方法,将基于原始光谱影像和基于NSVI、NDCSI去除阴影后提取的光谱数据与实测叶片氮素含量进行相关性分析,分别筛选氮素含量的敏感波段并构建光谱参量;采用偏最小二乘(partial least square,PLS)及支持向量机(support vector machine,SVM)方法构建果树冠层氮素含量反演模型并进行精度检验。【结果】绿光波段和红光波段为果树冠层氮素含量反演的敏感波段;阴影削弱了果树冠层的光谱信息,去除阴影前后,冠层多光谱各波段光谱差异较大,在红边波段及近红外波段尤为明显;基于2个阴影指数去除阴影后构建的氮素反演模型精度均有提升,最优模型为基于NDCSI去除阴影后构建的支持向量机氮素含量反演模型,该模型建模集R^(2)和RPD分别为0.774、1.828;验证集R^(2)和RPD分别为0.723、1.819。【结论】基于NDCSI可有效去除无人机多光谱果树冠层影像中的阴影,提高氮素含量反演精度,为果园氮素精准管理提供了有效参考。 展开更多
关键词 冠层阴影 阴影植被指数 无人机 多光谱 遥感
下载PDF
基于随机森林回归算法的苹果树冠层光照分布模型 被引量:11
3
作者 师翊 耿楠 +2 位作者 胡少军 张志毅 张晶 《农业机械学报》 EI CAS CSCD 北大核心 2019年第5期214-222,共9页
合理的果树冠层结构有利于光照的有效分布,对提升果实产量与品质有重要意义。为揭示果树冠层内部的光照分布情况,针对目前果树冠层内部光照强度获取难度大、预测精度低的问题,研究了冠层颜色特征与光照强度的对应关系,提出一种基于冠层... 合理的果树冠层结构有利于光照的有效分布,对提升果实产量与品质有重要意义。为揭示果树冠层内部的光照分布情况,针对目前果树冠层内部光照强度获取难度大、预测精度低的问题,研究了冠层颜色特征与光照强度的对应关系,提出一种基于冠层剖面阴影特征和冠层点云颜色特征的随机森林预测模型。以纺锤形"陕富6号"苹果树为研究对象,首先使用Kinect 2. 0采集果树的双面点云数据,预处理后得到完整的点云数据;其次,基于改进的空间殖民算法和叶序添加规则重构果树的三维模型;最后,使用"切片法",在垂直方向上将冠层模型每0. 1 m分层划分,使用POV-Ray渲染器逐层渲染阴影,同时使用光照度计,自顶向下每0. 1 m实测光照强度数据,构建以每层阴影图灰度特征和每层点云HSI颜色特征为输入,以相对光照强度为输出的随机森林网络。试验结果表明,该方法能够较为准确地预测冠层内的光照分布情况,预测值与实际值的决定系数R^2为0. 864,平均绝对百分比误差MAPE为0. 236,RF回归模型可作为苹果树冠层内光照分布预测的有效方法,为果树的剪枝、整形等研究提供参考。 展开更多
关键词 苹果树 点云 三维重构 冠层阴影 光照 随机森林
下载PDF
多光谱影像NDVI阴影影响去除模型 被引量:8
4
作者 焦俊男 石静 +2 位作者 田庆久 高林 徐念旭 《遥感学报》 EI CSCD 北大核心 2020年第1期53-66,共14页
归一化植被指数(NDVI)在植被多光谱遥感反演中占据尤为重要的地位,而遥感影像中普遍存在的阴影对NDVI的精度产生很大的影响,因此去除阴影对植被NDVI的影响对更精确的定量化研究具有应用价值。本文基于光照区和阴影区的太阳辐射能量差异... 归一化植被指数(NDVI)在植被多光谱遥感反演中占据尤为重要的地位,而遥感影像中普遍存在的阴影对NDVI的精度产生很大的影响,因此去除阴影对植被NDVI的影响对更精确的定量化研究具有应用价值。本文基于光照区和阴影区的太阳辐射能量差异,模拟出同一植被在光照区和阴影区的辐亮度,分析阴影对NDVI的影响机理;利用植被固有反射率谱间关系,引入对阴影极敏感的且与植被信息相关性小的归一化暗像元指数NDPI(Normalized Dark Pixel Index),分析同一植被处于光照区与阴影区的NDVI关系,构建以光照区植被NDVI为基准的NDVI阴影影响去除模型NSEE(NDVI Shadow-Effect-Eliminating),并应用于Landsat 8 OLI影像进行验证。结果表明:NDVI阴影影响基本去除,阴影区NDVI接近正常值,且光照区NDVI保持稳定;有效解决了阴影导致NDVI统计直方图的偏态问题,使其更接近正态分布;与验证影像NDVI沿剖面线逐像元比对发现,植被NDVI阴影影响基本去除;均方根误差RMSE为0.067。本模型能够将本身NDVI值很低的像元与阴影导致NDVI降低的植被像元区分开,符合实际地物情况;模型基于影像自身信息,去除NDVI阴影影响的同时,有效保持了NDVI的相对空间关系;本文基于物理机理构建模型,模型表达简洁、易于应用,且仅依赖于影像自身信息,无需异源数据,计算方便且高效。 展开更多
关键词 遥感 植被阴影 NDVI NDPI 阴影 LANDSAT 8 OLI 多光谱遥感
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部