期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
冬季西太平洋遥相关型的环流结构特征及其与我国冬季气温和降水的关系 被引量:31
1
作者 李勇 何金海 +1 位作者 姜爱军 周兵 《气象科学》 CSCD 北大核心 2007年第2期119-125,共7页
用近55 a资料研究了冬季西太平洋遥相关型(WP)异常环流特征及其与我国冬季天气气候的关系。结果表明:冬季西太平洋遥相关型与我国冬季天气气候关系密切。高指数年500 hPa高度场亚洲大陆上空中高纬为负高度异常,中纬度西风偏强,环流呈纬... 用近55 a资料研究了冬季西太平洋遥相关型(WP)异常环流特征及其与我国冬季天气气候的关系。结果表明:冬季西太平洋遥相关型与我国冬季天气气候关系密切。高指数年500 hPa高度场亚洲大陆上空中高纬为负高度异常,中纬度西风偏强,环流呈纬向型,对应海平面气压场上西伯利亚高压偏弱,东亚冬季风偏弱;低指数年情况相反。冬季西太平洋遥相关指数与我国冬季气温和降水存在显著的大范围正相关,与气温的高相关区为我国东部、南部沿海及西南地区所形成的U型区域,而与降水的高相关区则主要分布在我国东部地区。 展开更多
关键词 西太平洋遥相关型 环流异常 冬季气温降水
下载PDF
重庆秋季降水特征及大气环流异常分析 被引量:13
2
作者 周浩 李梗 程炳岩 《气象科学》 CSCD 北大核心 2008年第4期444-449,共6页
利用重庆1960—2006年秋季降水量计算了重庆地区秋季区域降水指数,采用相关与合成分析、线性趋势估计、Mann-Kendall突变检测方法和小波分析等统计诊断方法分析了重庆秋季降水变化特征及其与同期和前期大气环流的关系。结果表明:重庆秋... 利用重庆1960—2006年秋季降水量计算了重庆地区秋季区域降水指数,采用相关与合成分析、线性趋势估计、Mann-Kendall突变检测方法和小波分析等统计诊断方法分析了重庆秋季降水变化特征及其与同期和前期大气环流的关系。结果表明:重庆秋季降水偏多、偏少年同期及前期中高纬度地区高度场距平都有明显的差异。前期冬季北太平洋中纬度地区对流层高度距平为正,加拿大西部对流层高度距平为负时,秋季重庆降水异常偏多,具有一定的预测意义。在此基础上定义了影响重庆地区秋季降水的前期因子。 展开更多
关键词 西太平洋遥相关型 环流异常 冬季气温降水
下载PDF
Dynamical Downscaling of the Twentieth Century Reanalysis for China:Climatic Means during 1981–2010 被引量:1
3
作者 KONG Xiang-Hui BI Xun-Qiang 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第3期166-173,共8页
This study presents a dynamically downscaled climatology over East Asia using the non-hydrostatic Weather Research and Forecasting (WRF) model, forced by the Twentieth Century Reanalysis (20CR-v2). The whole exper... This study presents a dynamically downscaled climatology over East Asia using the non-hydrostatic Weather Research and Forecasting (WRF) model, forced by the Twentieth Century Reanalysis (20CR-v2). The whole experiment is a 111-year (1900--2010) continuous run at 50 km horizontal resolution. Comparisons of climatic means and seasonal cycles among observations, 20CR-v2, and WRF results during the last 30 years (1981-2010) in China are presented, with a focus on sur- face air temperature and precipitation in both summer and winter. The WRF results reproduce the main features of surface air temperature in the two seasons in China, and outperform 20CR-v2 in regional details due to topog- raphic forcing. Summer surface air temperature biases are reduced by as much as 1℃-2℃. For precipitation, the simulation results reproduce the decreasing pattern from Southeast to Northwest China in winter. For summer rainfall, the WRF simulation results reproduce the correct magnitude and position of heavy rainfall around the southeastern coastal area, and are better than 20CR-v2. One of the significant improvements is that an unrealistic center of summer precipitation in Southeast China present in 20CR-v2 is eliminated. However, the simulated results underestimate winter surface air temperature in northern China and winter rainfall in some regions in southeastern China. The mean seasonal cycles of surface air tempera- ture and precipitation are captured well over most of sub-regions by the WRF model. 展开更多
关键词 regional climate model WRF surface air temperature PRECIPITATION
下载PDF
Climate Change Facts in Central China during 1961-2010 被引量:1
4
作者 WAN Su-Qin GAO Yuan +4 位作者 ZHOU Bo WANG Hai-Jun LIU Min SHI Rui-Qin WANG Kai 《Advances in Climate Change Research》 SCIE 2013年第2期103-109,共7页
Based on the observations from 239 meteorological stations located in Central China (Henan, Hubei and Hunan provinces), this paper focuses on the climate change facts during 1961- 2010. There was a significant incre... Based on the observations from 239 meteorological stations located in Central China (Henan, Hubei and Hunan provinces), this paper focuses on the climate change facts during 1961- 2010. There was a significant increasing trend in annual mean temperature for Central China during 1961 -2010. The increasing rate was 0.15℃ per decade, which was lower than the national trend. Since the mid-1980s, temperature increasing was obvious. Large increasing rate was observed in the mid-eastern part of Central China. For the four seasons, the increasing rate in winter was the largest (0.27℃ per decade). The increasing rate in the annual mean minimum temperature was larger than that in the annual mean maximum temperature from 1961 to 2010. As a result, the diurnal range of temperature decreased at the rate of -0.10℃ per decade. The extreme high temperature events were increasing while the extreme low temperature events were significantly decreasing. There was no obvious trend in annual precipitation for Central China during 1961-2010. Precipitation in summer and winter significantly increased; change of precipitation in spring was not obvious; precipitation in autumn was decreasing. The decreasing rate of annual rainy days was -3.4 d per decade. The precipitation intensity increased at the rate of 0.25 mm d-1 per decade. Heavy-rain days significantly increased. Spring and summer started earlier while autumn and winter started later. As a result, spring and summer duration was expanding whereas autumn and winter duration shortened. 展开更多
关键词 Central China climate change TEMPERATURE PRECIPITATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部