In this study,the NCEP/NCAR reanalysis dataset was used to analyze the variability modes of the winter upper-level wind field over Asian mid-high latitude region.As shown by the results,the dominant variability modes ...In this study,the NCEP/NCAR reanalysis dataset was used to analyze the variability modes of the winter upper-level wind field over Asian mid-high latitude region.As shown by the results,the dominant variability modes of the winter upper-level wind field over Asian mid-high latitude region are characterized by the out-of-phase variation in the intensity of the subtropical and temperate jets over East Asia and the meridional shift of the subtropical jet axis,on interannual and multiannual scales,respectively.The first leading variability mode can be used as a good measure to represent the integral variation of atmospheric general circulation in Asian mid-latitude region.Composite analyses suggest that the first leading variability mode of the winter upper-level wind field is intimately related to the atmospheric circulation and temperature anomalies in the northern hemispheric mid-latitude region.展开更多
The Arctic stratospheric polar vortex was exceptional strong,cold and persistent in the winter and spring of 2019–2020.Based on reanalysis data from the National Centers for Environmental Prediction/National Center f...The Arctic stratospheric polar vortex was exceptional strong,cold and persistent in the winter and spring of 2019–2020.Based on reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research and ozone observations from the Ozone Monitoring Instrument,the authors investigated the dynamical variation of the stratospheric polar vortex during winter 2019–2020 and its influence on surface weather and ozone depletion.This strong stratospheric polar vortex was affected by the less active upward propagation of planetary waves.The seasonal transition of the stratosphere during the stratospheric final warming event in spring 2020 occurred late due to the persistence of the polar vortex.A positive Northern Annular Mode index propagated from the stratosphere to the surface,where it was consistent with the Arctic Oscillation and North Atlantic Oscillation indices.As a result,the surface temperature in Eurasia and North America was generally warmer than the climatology.In some places of Eurasia,the surface temperature was about 10 K warmer during the period from January to February 2020.The most serious Arctic ozone depletion since 2004 has been observed since February 2020.The mean total column ozone within 60°–90°N from March to 15 April was about 80 DU less than the climatology.展开更多
Weak stratospheric polar vortex(WPV)events during winter months were investigated.WPV events were identified as being weakest in December,accompanied by the most dramatic increase in geopotential height over the polar...Weak stratospheric polar vortex(WPV)events during winter months were investigated.WPV events were identified as being weakest in December,accompanied by the most dramatic increase in geopotential height over the polar region.After the onset of a December WPV event,the dynamic processes influencing Eurasian temperature can be split into two separate periods.Period I(lag of 0-25 days)is referred to as the stratosphere-troposphere interactions period,as it is mainly characterized by stratospheric signals propagating downwards.In Period I,a stratospheric negative Northern Annular Mode(NAM)pattern associated with the WPV propagates downwards,inducing a negative NAM in the troposphere.The anomalous low centers over the Mediterranean and North Pacific bring cold advection to northern Eurasia,resulting in a north-cold-south-warm dipole pattern over Eurasia.The zero line between negative and positive temperature anomalies moves southwards during days 5-20.Stratospheric cold anomalies at midlatitudes propagate downwards to high latitudes in the troposphere and contribute to the dipole structure.During PeriodⅡ(lag of 25-40 days),as downward signals from the stratosphere have vanished,the dynamic processes mainly take place within the troposphere.Specifically,a wave train is initiated from the North Atlantic region to northern Europe.The propagation of wave activity flux intensifies a cyclonic anomaly over northern Europe,which brings cold advection to Scandinavia and warm advection to central Asia.Therefore,a northwest-cold-southeast-warm dipole structure occupies Eurasia and migrates southeastwards during this period.展开更多
This paper discusses the long-term temperature variation of the Southern Yellow Sea Cold Water Mass(SYSCWM)and examines those factors that infl uence the SYSCWM,based on hydrographic datasets of the China National Sta...This paper discusses the long-term temperature variation of the Southern Yellow Sea Cold Water Mass(SYSCWM)and examines those factors that infl uence the SYSCWM,based on hydrographic datasets of the China National Standard Section and the Korea Oceanographic Data Center.Surface air temperature,meridional wind speed,and sea surface temperature data are used to describe the seasonal changes.Mean temperature of the two centers of the SYSCWM had diff erent long-term trends.The temperature of the center in the west of the SYSCWM was rising whereas that of the center in the east was falling.Mean temperature of the western center was related to warm water intrusion of the Yellow Sea Warm Current,the winter meridional wind,and the winter air temperature.Summer process played a primary role in the cooling trend of temperature in the eastern center.A decreasing trend of salinity in the eastern half of the SYSCWM showed that warm water intrusion from the south might weaken,as could the SYSCWM circulation.Weakened circulation provided less horizontal heat input to the eastern half of the SYSCWM.Less lateral heat input may have led to the decreasing trend in temperature of the eastern center of the SYSCWM.Further,warmer sea surface temperatures and less heat input in the deep layers intensifi ed the thermocline of the eastern SYSCWM.A stronger thermocline had less heat fl ux input from upper layers to this half of the SYSCWM.Stronger thermocline and weakened heat input can be seen as two main causes of the cooling temperature trend of the eastern center of the SYSCWM.展开更多
A decadal change of the tropical tropospheric temperature (TT) was identified to occur in the winter of 1997. Compared with that in the former period (1979-1996), the wintertime TT was significantly high over most...A decadal change of the tropical tropospheric temperature (TT) was identified to occur in the winter of 1997. Compared with that in the former period (1979-1996), the wintertime TT was significantly high over most of the tropical regions except over the tropical eastern Pacific during the latter period (1997-2014) because the sea surface temperature (SST) exhibited a decadal La Nifia-like pattern after 1997. The warm SST anomalies over the tropical western Pacific facilitated enhanced precipitation and increased heat release to the tropical atmosphere, leading to a warmer tropical tropo- sphere in the latter period. In addition to the mean TT values, the interannual variability of the tropical TT changed in 1997. The leading mode of the tropical TT explained 72.9 % of the total variance in the former period. It led to significant warming over midlatitude North America via a Pacific-North America (PNA)-like wave train and off the coast of East Asia via an anomalous lower-tropospheric anticyclone around the Philippines. The mode remained a similar pattern but explained 85.4 % of the total variance in the latter period, and its location was slightly westward-shifted compared with that in the former period. As a result, the structure of the PNA-like wave train changed, leading to anomalous warming over northwestern North America and enhanced precipitation over the southern North America. Meanwhile, the anomalous lower- tropospheric anticyclone around the Philippines shifted westward, leading to increased precipitation and regional warming over East Asia. The decadal changes of the leading mode of the tropical TT and its influences on the extratropical climate can be attributed to the changes of the tropical SST variability.展开更多
The association of seasonal timing of stratospheric final warming events(SFWs) in spring and the occurrence of major and minor stratospheric sudden warming events(SSWs) in midwinter were investigated through statistic...The association of seasonal timing of stratospheric final warming events(SFWs) in spring and the occurrence of major and minor stratospheric sudden warming events(SSWs) in midwinter were investigated through statistical analysis, parallel comparison, and composite analysis, based on the NCEP-NCAR reanalysis dataset covering 1958–2012. It was found that the intensity and occurrence of winter SSW events can largely affect the timing of spring SFWs. Specifically, the SFW onset dates tend to be later(earlier) after the occurrence(absence) of winter major SSWs. However, the occurrence or absence of minor SSWs does not change the frequency of early and late SFWs. A parallel comparison of the temporal evolution of the anomalous circulation and planetary-waves between major SSW and minor SSW winters indicates that the stratospheric polar vortex(polar jet) will keep being anomalously stronger 30 days after major SSW onset. And the associated significant negative Eliassen-Palm(EP) flux anomalies can persist for as long as 45 days after major SSW events. In contrast, the circulation anomalies around the occurrence of minor SSW events can last only a few days. To further verify the possible influence of the occurrence of major SSWs on the seasonal timing of SFWs, composite analysis was performed respectively for the 21 major-SSW years, 15 minor-SSW years, and the 15 non-SSW years. Generally, planetary-wave activity in the extratropical stratosphere tends to be stronger(weaker) and the westerly polar jet is anomalously weaker(stronger) in major-SSW(non-SSW) winters. But in the following spring, the planetary-wave activity is weaker(stronger) accompanied with an anomalously stronger(weaker) stratospheric polar vortex. In spring after minor-SSW years, however, the stratospheric polar vortex and the westerly polar jet exhibit a state close to climatology with relatively gentle variations.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41130963)
文摘In this study,the NCEP/NCAR reanalysis dataset was used to analyze the variability modes of the winter upper-level wind field over Asian mid-high latitude region.As shown by the results,the dominant variability modes of the winter upper-level wind field over Asian mid-high latitude region are characterized by the out-of-phase variation in the intensity of the subtropical and temperate jets over East Asia and the meridional shift of the subtropical jet axis,on interannual and multiannual scales,respectively.The first leading variability mode can be used as a good measure to represent the integral variation of atmospheric general circulation in Asian mid-latitude region.Composite analyses suggest that the first leading variability mode of the winter upper-level wind field is intimately related to the atmospheric circulation and temperature anomalies in the northern hemispheric mid-latitude region.
基金supported by the Key Laboratory of Middle Atmosphere and Global Environment Observation grant number LAGEO-2019-01。
文摘The Arctic stratospheric polar vortex was exceptional strong,cold and persistent in the winter and spring of 2019–2020.Based on reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research and ozone observations from the Ozone Monitoring Instrument,the authors investigated the dynamical variation of the stratospheric polar vortex during winter 2019–2020 and its influence on surface weather and ozone depletion.This strong stratospheric polar vortex was affected by the less active upward propagation of planetary waves.The seasonal transition of the stratosphere during the stratospheric final warming event in spring 2020 occurred late due to the persistence of the polar vortex.A positive Northern Annular Mode index propagated from the stratosphere to the surface,where it was consistent with the Arctic Oscillation and North Atlantic Oscillation indices.As a result,the surface temperature in Eurasia and North America was generally warmer than the climatology.In some places of Eurasia,the surface temperature was about 10 K warmer during the period from January to February 2020.The most serious Arctic ozone depletion since 2004 has been observed since February 2020.The mean total column ozone within 60°–90°N from March to 15 April was about 80 DU less than the climatology.
基金supported by the National Natural Science Foundation of China [grant numbers 41730964,41575079,and 41421004]
文摘Weak stratospheric polar vortex(WPV)events during winter months were investigated.WPV events were identified as being weakest in December,accompanied by the most dramatic increase in geopotential height over the polar region.After the onset of a December WPV event,the dynamic processes influencing Eurasian temperature can be split into two separate periods.Period I(lag of 0-25 days)is referred to as the stratosphere-troposphere interactions period,as it is mainly characterized by stratospheric signals propagating downwards.In Period I,a stratospheric negative Northern Annular Mode(NAM)pattern associated with the WPV propagates downwards,inducing a negative NAM in the troposphere.The anomalous low centers over the Mediterranean and North Pacific bring cold advection to northern Eurasia,resulting in a north-cold-south-warm dipole pattern over Eurasia.The zero line between negative and positive temperature anomalies moves southwards during days 5-20.Stratospheric cold anomalies at midlatitudes propagate downwards to high latitudes in the troposphere and contribute to the dipole structure.During PeriodⅡ(lag of 25-40 days),as downward signals from the stratosphere have vanished,the dynamic processes mainly take place within the troposphere.Specifically,a wave train is initiated from the North Atlantic region to northern Europe.The propagation of wave activity flux intensifies a cyclonic anomaly over northern Europe,which brings cold advection to Scandinavia and warm advection to central Asia.Therefore,a northwest-cold-southeast-warm dipole structure occupies Eurasia and migrates southeastwards during this period.
基金Supported by the National Natural Science Foundation of China(Nos.41176018,41376031,41206020)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020301)the NSFCShandong Joint Fund for Marine Science Research Centers(No.U1406401)
文摘This paper discusses the long-term temperature variation of the Southern Yellow Sea Cold Water Mass(SYSCWM)and examines those factors that infl uence the SYSCWM,based on hydrographic datasets of the China National Standard Section and the Korea Oceanographic Data Center.Surface air temperature,meridional wind speed,and sea surface temperature data are used to describe the seasonal changes.Mean temperature of the two centers of the SYSCWM had diff erent long-term trends.The temperature of the center in the west of the SYSCWM was rising whereas that of the center in the east was falling.Mean temperature of the western center was related to warm water intrusion of the Yellow Sea Warm Current,the winter meridional wind,and the winter air temperature.Summer process played a primary role in the cooling trend of temperature in the eastern center.A decreasing trend of salinity in the eastern half of the SYSCWM showed that warm water intrusion from the south might weaken,as could the SYSCWM circulation.Weakened circulation provided less horizontal heat input to the eastern half of the SYSCWM.Less lateral heat input may have led to the decreasing trend in temperature of the eastern center of the SYSCWM.Further,warmer sea surface temperatures and less heat input in the deep layers intensifi ed the thermocline of the eastern SYSCWM.A stronger thermocline had less heat fl ux input from upper layers to this half of the SYSCWM.Stronger thermocline and weakened heat input can be seen as two main causes of the cooling temperature trend of the eastern center of the SYSCWM.
基金supported by the National Natural Science Foundation of China(4142250141230527)the National Key Scientific Research Plan of China(2014CB953904)
文摘A decadal change of the tropical tropospheric temperature (TT) was identified to occur in the winter of 1997. Compared with that in the former period (1979-1996), the wintertime TT was significantly high over most of the tropical regions except over the tropical eastern Pacific during the latter period (1997-2014) because the sea surface temperature (SST) exhibited a decadal La Nifia-like pattern after 1997. The warm SST anomalies over the tropical western Pacific facilitated enhanced precipitation and increased heat release to the tropical atmosphere, leading to a warmer tropical tropo- sphere in the latter period. In addition to the mean TT values, the interannual variability of the tropical TT changed in 1997. The leading mode of the tropical TT explained 72.9 % of the total variance in the former period. It led to significant warming over midlatitude North America via a Pacific-North America (PNA)-like wave train and off the coast of East Asia via an anomalous lower-tropospheric anticyclone around the Philippines. The mode remained a similar pattern but explained 85.4 % of the total variance in the latter period, and its location was slightly westward-shifted compared with that in the former period. As a result, the structure of the PNA-like wave train changed, leading to anomalous warming over northwestern North America and enhanced precipitation over the southern North America. Meanwhile, the anomalous lower- tropospheric anticyclone around the Philippines shifted westward, leading to increased precipitation and regional warming over East Asia. The decadal changes of the leading mode of the tropical TT and its influences on the extratropical climate can be attributed to the changes of the tropical SST variability.
基金supported by the National Basic Research Program of China(Grant No.2010CB428603)Advanced Talent Program of NUIST(Grant No.2014R010)
文摘The association of seasonal timing of stratospheric final warming events(SFWs) in spring and the occurrence of major and minor stratospheric sudden warming events(SSWs) in midwinter were investigated through statistical analysis, parallel comparison, and composite analysis, based on the NCEP-NCAR reanalysis dataset covering 1958–2012. It was found that the intensity and occurrence of winter SSW events can largely affect the timing of spring SFWs. Specifically, the SFW onset dates tend to be later(earlier) after the occurrence(absence) of winter major SSWs. However, the occurrence or absence of minor SSWs does not change the frequency of early and late SFWs. A parallel comparison of the temporal evolution of the anomalous circulation and planetary-waves between major SSW and minor SSW winters indicates that the stratospheric polar vortex(polar jet) will keep being anomalously stronger 30 days after major SSW onset. And the associated significant negative Eliassen-Palm(EP) flux anomalies can persist for as long as 45 days after major SSW events. In contrast, the circulation anomalies around the occurrence of minor SSW events can last only a few days. To further verify the possible influence of the occurrence of major SSWs on the seasonal timing of SFWs, composite analysis was performed respectively for the 21 major-SSW years, 15 minor-SSW years, and the 15 non-SSW years. Generally, planetary-wave activity in the extratropical stratosphere tends to be stronger(weaker) and the westerly polar jet is anomalously weaker(stronger) in major-SSW(non-SSW) winters. But in the following spring, the planetary-wave activity is weaker(stronger) accompanied with an anomalously stronger(weaker) stratospheric polar vortex. In spring after minor-SSW years, however, the stratospheric polar vortex and the westerly polar jet exhibit a state close to climatology with relatively gentle variations.