期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
冬枣光谱数据的灰色关联分析及叶片氮素含量预测 被引量:9
1
作者 杨玮 孙红 +2 位作者 郑立华 张瑶 李民赞 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第11期3083-3087,共5页
采用灰色理论对冬枣叶片氮素含量和光谱反射率之间进行了灰度关联分析,分析结果显示波长560,678以及786nm处的光谱反射率(G560,R678,NIR786)与冬枣叶片氮素含量之间的灰色关联度最高。利用上述三个特征波段光谱反射率计算得到的植被指... 采用灰色理论对冬枣叶片氮素含量和光谱反射率之间进行了灰度关联分析,分析结果显示波长560,678以及786nm处的光谱反射率(G560,R678,NIR786)与冬枣叶片氮素含量之间的灰色关联度最高。利用上述三个特征波段光谱反射率计算得到的植被指数共计9个。进一步运用灰色系统理论分析了九种植被指数与叶片氮素含量的灰色关联度,结果显示:归一化植被指数(NDVI)、绿色比值植被指数(GRVI)、归一化差异绿度植被指数(NDGI)、绿色归一化植被指数(GNDVI)和组合归一化植被指数(CNDVI)等5个指数与叶片氮素含量的灰色关联度较高。利用3个特征波段的光谱反射率和5个关联度较高的植被指数,分别采用最小二乘支持向量机(LS-SVM)以及GM(1,N)模型建立了冬枣叶片氮素含量预测模型。结果表明,采用特征波段光谱反射率(G560,R678,NIR786)建立的冬枣叶片氮素含量GM(1,N)模型的精度最高,预测R2达0.928,验证R2达0.896。 展开更多
关键词 冬枣光谱 灰色关联度 植被指数 GM(1 N) LS-SVM
下载PDF
冬枣氮素含量预测模型中特征波长选择方法的应用(英文) 被引量:4
2
作者 杨玮 李民赞 +1 位作者 郑立华 孙红 《农业工程学报》 EI CAS CSCD 北大核心 2015年第S2期164-168,共5页
为了提高近红外光谱法快速测定枣叶氮含量的准确性和鲁棒性。采用偏最小二乘法建立了冬枣叶片氮含量近红外光谱模型。模型的相关系数为0.799,均方根误差为0.055。整个光谱区域包含了许多与冬枣氮含量无关的光谱变量。冗余信息的存在降... 为了提高近红外光谱法快速测定枣叶氮含量的准确性和鲁棒性。采用偏最小二乘法建立了冬枣叶片氮含量近红外光谱模型。模型的相关系数为0.799,均方根误差为0.055。整个光谱区域包含了许多与冬枣氮含量无关的光谱变量。冗余信息的存在降低了模型的预测性能。所以采用间隔偏最小二乘(IPLS)结合遗传算法和模拟退火算法来选择冬枣叶片氮含量的特征波长。用凯氏定氮法测定冬枣叶样品的氮含量。试验选用15棵枣树,每棵树5个叶片作为试验对象。用于光谱测量的仪器是ASD光谱仪,测试仪在350~2 500 nm波长范围内,光谱分辨率为1 nm。在数据采集前使用了白板进行校正(标准白板反射系数为1),每个样品测量了5次,取平均值作为样品的相对反射率。遗传算法结合间隔偏最小二乘法选取的4个特征波长为685,689,781,783 nm。根据这4个波长,建立了冬枣叶片氮含量近红外光谱模型。模型预测相关系数为0.9175,预测均方根误差为0.063。利用模拟退火算法,建立了7个波长的冬枣叶片氮含量的近红外光谱模型。模型的相关系数为0.9301,均方根误差为0.052。因此,近红外光谱结合光谱选择方法的特点,可以有效地提高模型的精度,使模型更实用。但光谱选择方法的特点并不普遍。基于单波长变量选择的模型更为敏感,更适用于均匀采样。基于波长间隔选择的模型抗干扰能力相对较强,但更适合于不均匀采样。因此,基于状态与模型相结合的特征选择可以更好地应用于模型。 展开更多
关键词 光谱分析 模型 冬枣光谱数据 偏最小二乘法 遗传算法 模拟退火算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部