期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
冬枣光谱数据的灰色关联分析及叶片氮素含量预测
被引量:
9
1
作者
杨玮
孙红
+2 位作者
郑立华
张瑶
李民赞
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2013年第11期3083-3087,共5页
采用灰色理论对冬枣叶片氮素含量和光谱反射率之间进行了灰度关联分析,分析结果显示波长560,678以及786nm处的光谱反射率(G560,R678,NIR786)与冬枣叶片氮素含量之间的灰色关联度最高。利用上述三个特征波段光谱反射率计算得到的植被指...
采用灰色理论对冬枣叶片氮素含量和光谱反射率之间进行了灰度关联分析,分析结果显示波长560,678以及786nm处的光谱反射率(G560,R678,NIR786)与冬枣叶片氮素含量之间的灰色关联度最高。利用上述三个特征波段光谱反射率计算得到的植被指数共计9个。进一步运用灰色系统理论分析了九种植被指数与叶片氮素含量的灰色关联度,结果显示:归一化植被指数(NDVI)、绿色比值植被指数(GRVI)、归一化差异绿度植被指数(NDGI)、绿色归一化植被指数(GNDVI)和组合归一化植被指数(CNDVI)等5个指数与叶片氮素含量的灰色关联度较高。利用3个特征波段的光谱反射率和5个关联度较高的植被指数,分别采用最小二乘支持向量机(LS-SVM)以及GM(1,N)模型建立了冬枣叶片氮素含量预测模型。结果表明,采用特征波段光谱反射率(G560,R678,NIR786)建立的冬枣叶片氮素含量GM(1,N)模型的精度最高,预测R2达0.928,验证R2达0.896。
展开更多
关键词
冬枣光谱
灰色关联度
植被指数
GM(1
N)
LS-SVM
下载PDF
职称材料
冬枣氮素含量预测模型中特征波长选择方法的应用(英文)
被引量:
4
2
作者
杨玮
李民赞
+1 位作者
郑立华
孙红
《农业工程学报》
EI
CAS
CSCD
北大核心
2015年第S2期164-168,共5页
为了提高近红外光谱法快速测定枣叶氮含量的准确性和鲁棒性。采用偏最小二乘法建立了冬枣叶片氮含量近红外光谱模型。模型的相关系数为0.799,均方根误差为0.055。整个光谱区域包含了许多与冬枣氮含量无关的光谱变量。冗余信息的存在降...
为了提高近红外光谱法快速测定枣叶氮含量的准确性和鲁棒性。采用偏最小二乘法建立了冬枣叶片氮含量近红外光谱模型。模型的相关系数为0.799,均方根误差为0.055。整个光谱区域包含了许多与冬枣氮含量无关的光谱变量。冗余信息的存在降低了模型的预测性能。所以采用间隔偏最小二乘(IPLS)结合遗传算法和模拟退火算法来选择冬枣叶片氮含量的特征波长。用凯氏定氮法测定冬枣叶样品的氮含量。试验选用15棵枣树,每棵树5个叶片作为试验对象。用于光谱测量的仪器是ASD光谱仪,测试仪在350~2 500 nm波长范围内,光谱分辨率为1 nm。在数据采集前使用了白板进行校正(标准白板反射系数为1),每个样品测量了5次,取平均值作为样品的相对反射率。遗传算法结合间隔偏最小二乘法选取的4个特征波长为685,689,781,783 nm。根据这4个波长,建立了冬枣叶片氮含量近红外光谱模型。模型预测相关系数为0.9175,预测均方根误差为0.063。利用模拟退火算法,建立了7个波长的冬枣叶片氮含量的近红外光谱模型。模型的相关系数为0.9301,均方根误差为0.052。因此,近红外光谱结合光谱选择方法的特点,可以有效地提高模型的精度,使模型更实用。但光谱选择方法的特点并不普遍。基于单波长变量选择的模型更为敏感,更适用于均匀采样。基于波长间隔选择的模型抗干扰能力相对较强,但更适合于不均匀采样。因此,基于状态与模型相结合的特征选择可以更好地应用于模型。
展开更多
关键词
氮
光谱
分析
模型
冬枣光谱
数据
偏最小二乘法
遗传算法
模拟退火算法
下载PDF
职称材料
题名
冬枣光谱数据的灰色关联分析及叶片氮素含量预测
被引量:
9
1
作者
杨玮
孙红
郑立华
张瑶
李民赞
机构
现代精细农业系统集成研究教育部重点实验室中国农业大学
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2013年第11期3083-3087,共5页
基金
国家科技部(863)项目(2011AA100703)
国家自然科学基金项目(31071330)资助
文摘
采用灰色理论对冬枣叶片氮素含量和光谱反射率之间进行了灰度关联分析,分析结果显示波长560,678以及786nm处的光谱反射率(G560,R678,NIR786)与冬枣叶片氮素含量之间的灰色关联度最高。利用上述三个特征波段光谱反射率计算得到的植被指数共计9个。进一步运用灰色系统理论分析了九种植被指数与叶片氮素含量的灰色关联度,结果显示:归一化植被指数(NDVI)、绿色比值植被指数(GRVI)、归一化差异绿度植被指数(NDGI)、绿色归一化植被指数(GNDVI)和组合归一化植被指数(CNDVI)等5个指数与叶片氮素含量的灰色关联度较高。利用3个特征波段的光谱反射率和5个关联度较高的植被指数,分别采用最小二乘支持向量机(LS-SVM)以及GM(1,N)模型建立了冬枣叶片氮素含量预测模型。结果表明,采用特征波段光谱反射率(G560,R678,NIR786)建立的冬枣叶片氮素含量GM(1,N)模型的精度最高,预测R2达0.928,验证R2达0.896。
关键词
冬枣光谱
灰色关联度
植被指数
GM(1
N)
LS-SVM
Keywords
Spectra data of jujube
Gray relation degree
Vegetation index
GM(1, N)
LS-SVM
分类号
S126 [农业科学—农业基础科学]
TP23 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
冬枣氮素含量预测模型中特征波长选择方法的应用(英文)
被引量:
4
2
作者
杨玮
李民赞
郑立华
孙红
机构
中国农业大学现代精细农业系统集成研究教育部重点实验室
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2015年第S2期164-168,共5页
基金
New teacher scientific research fund(2015QC021)
948 Project(2011-G32)
文摘
为了提高近红外光谱法快速测定枣叶氮含量的准确性和鲁棒性。采用偏最小二乘法建立了冬枣叶片氮含量近红外光谱模型。模型的相关系数为0.799,均方根误差为0.055。整个光谱区域包含了许多与冬枣氮含量无关的光谱变量。冗余信息的存在降低了模型的预测性能。所以采用间隔偏最小二乘(IPLS)结合遗传算法和模拟退火算法来选择冬枣叶片氮含量的特征波长。用凯氏定氮法测定冬枣叶样品的氮含量。试验选用15棵枣树,每棵树5个叶片作为试验对象。用于光谱测量的仪器是ASD光谱仪,测试仪在350~2 500 nm波长范围内,光谱分辨率为1 nm。在数据采集前使用了白板进行校正(标准白板反射系数为1),每个样品测量了5次,取平均值作为样品的相对反射率。遗传算法结合间隔偏最小二乘法选取的4个特征波长为685,689,781,783 nm。根据这4个波长,建立了冬枣叶片氮含量近红外光谱模型。模型预测相关系数为0.9175,预测均方根误差为0.063。利用模拟退火算法,建立了7个波长的冬枣叶片氮含量的近红外光谱模型。模型的相关系数为0.9301,均方根误差为0.052。因此,近红外光谱结合光谱选择方法的特点,可以有效地提高模型的精度,使模型更实用。但光谱选择方法的特点并不普遍。基于单波长变量选择的模型更为敏感,更适用于均匀采样。基于波长间隔选择的模型抗干扰能力相对较强,但更适合于不均匀采样。因此,基于状态与模型相结合的特征选择可以更好地应用于模型。
关键词
氮
光谱
分析
模型
冬枣光谱
数据
偏最小二乘法
遗传算法
模拟退火算法
Keywords
nitrogen
spectrum analysis
models
spectra data of jujube
PLS
GA
SAA
分类号
S665.1 [农业科学—果树学]
O434.3 [机械工程—光学工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
冬枣光谱数据的灰色关联分析及叶片氮素含量预测
杨玮
孙红
郑立华
张瑶
李民赞
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2013
9
下载PDF
职称材料
2
冬枣氮素含量预测模型中特征波长选择方法的应用(英文)
杨玮
李民赞
郑立华
孙红
《农业工程学报》
EI
CAS
CSCD
北大核心
2015
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部