[Objective] The aim of the research was to study the effect of the ice bath time after heat shock and the incubation time on the transformation efficacy,and to establish a simple and quick transformation method.[Metho...[Objective] The aim of the research was to study the effect of the ice bath time after heat shock and the incubation time on the transformation efficacy,and to establish a simple and quick transformation method.[Method]Competent cells were prepared with two buffer solutions;with the ice bath time after heat shock and the recovery time as the variables,the relationship between these two factors and transformation efficacy was studied.[Result]The transformation efficacy was the best when the ice bath time was 2 min and the recovery time was 30 or 40 min;when the ice bath time and the recovery time was 0 min,a certain amount of transformants still could be obtained.[Conclusion]The ice bath time after heat shock and the recovery time had certain impact on transformation efficacy,but they were not the decisive factors.Therefore,in the general transformation experiment,these two steps could be omitted.展开更多
According to conventional theory, little genomic changes should occur in homozygous and stable amphiploids of the grass family, particularly those involving polyploid wheat as a parent. In the present study, however, ...According to conventional theory, little genomic changes should occur in homozygous and stable amphiploids of the grass family, particularly those involving polyploid wheat as a parent. In the present study, however, extensive genomic changes were detected in two octoploid partial amphiploids of common wheat (Triticum aestivum L.)_wheatgrass (Agropyron intermedium (Host) P.B.=Elytrigia intermedia (Host) Nevski=Thinopyrum intermedium (Host) Barkworth and Dewey), namely Zhong 3 and Zhong 5, by RFLP analysis using 10 low_copy, wheat chromosome_specific sequences and 33 representative homoeologous group_specific sequences as probes. Genomic changes involved loss of wheat hybridization fragment(s) and/or acquisition of new fragment(s). Uniformity of the RFLP patterns among 5 individual plants taken respectively from Zhong 3 and Zhong 5 in two successive generations, suggested that genomic changes probably had occurred in the early few generations after octoploid amphiploid formation, and remained essentially static thereafter. The highly similar RFLP patterns between Zhong 3 and Zhong 5, which had identical genomic constitution but differed from each other due to involvement of different wheat varieties as parents imply that genomic changes were probably not at random. Possible causes for the extensive and rapid genomic changes in the newly formed plant amphiploids, as well as their implications for polyploid genome evolution and breeding application are discussed.展开更多
In this study, we mainly introduce two salinity parameterization schemes used in Sea Ice Simulator (SIS), that is, isosaline scheme and salinity profile scheme. Comparing the equation of isosaline scheme with that o...In this study, we mainly introduce two salinity parameterization schemes used in Sea Ice Simulator (SIS), that is, isosaline scheme and salinity profile scheme. Comparing the equation of isosaline scheme with that of salinity profile scheme, we found that there was one different term between the two schemes named the salinity different term. The thermodynamic effect of the salinity difference term on sea ice thickness and sea ice concentration showed that: in the freezing processes from November to next May, the sea ice temperature could rise on the influence of the salinity difference term and restrain sea ice freezing; at the first melting phase from June to August, the upper ice melting rate was faster than the lower ice melting rate. Then sea ice temperature could rise and accelerate the sea ice melting; at the second melting phase from September to October, the upper ice melting rate was slower than the lower ice melting rate, then sea ice temperature could decrease and restrain sea ice melting. However, the effect of the salinity difference term on the sea ice thickness and sea ice concentration was weak. To analyze the impacts of the salinity different term on Arctic sea ice thickness and sea ice concentration, we also designed several experiments by introducing the two salinity parameterizations to the ice-ocean coupled model, Modular Ocean Model (MOM4), respectively. The simulated results confirmed the previous results of formula derivation.展开更多
Electrical conductivity of molten binary and ternary mixtures based on the system NaF-AlF3-SiO2 was investigated by means of a tube–cell (made of pyrolytic boron nitride) with stationary electrodes. Viscosity of th...Electrical conductivity of molten binary and ternary mixtures based on the system NaF-AlF3-SiO2 was investigated by means of a tube–cell (made of pyrolytic boron nitride) with stationary electrodes. Viscosity of the binary system Na3AlF6-SiO2 was measured by computerized torsion pendulum method. It was found that conductivity and viscosity varied linearly with temperature in all investigated mixtures. Obtained content dependence of electrical conductivity (isotherms) was divided into two parts. First, one represented the content region up to 10%(mole fraction) of SiO2;second, the region was with a higher content of SiO2 (from 10%up to 40%). While the conductivity considerably decreased with content of SiO2 in the second part; it surprisingly rose in the low content range. A small addition of SiO2 to the molten cryolite (up to 10%) could slightly increase viscosity, but had no influence on the slope of this dependence since it is responsible for a glassy-networks formation in the melt. Further addition of SiO2 to the molten cryolite had a huge effect on the viscosity.展开更多
The Los Alamos Sea-Ice Model(CICE)is one of the most popular sea-ice models.All versions of it have been the main sea-ice module coupled to climate system models.Therefore,evaluating their simulation capability is an ...The Los Alamos Sea-Ice Model(CICE)is one of the most popular sea-ice models.All versions of it have been the main sea-ice module coupled to climate system models.Therefore,evaluating their simulation capability is an important step in developing climate system models.Compared with observations and previous versions(CICE4.0 and CICE5.0),the advantages of CICE6.0(the latest version)are analyzed in this paper.It is found that CICE6.0 has the minimum interannual errors,and the seasonal cycle it simulates is the most consistent with observations.CICE4.0 overestimates winter sea-ice and underestimates summer sea-ice severely.Meanwhile,the errors of CICE5.0 in winter are larger than for the other versions.The main attention is paid to the perennial ice and the seasonal ice.The spatial distribution of root-mean-square errors indicates that the simulated errors are distributed in the Atlantic sector and the outer Arctic.Both CICE4.0 and CICE5.0 underestimate the concentration of the perennial ice and overestimate that of the seasonal ice in these areas.Meanwhile,CICE6.0 solves this problem commendably.Moreover,the decadal trends it simulates are comparatively the best,especially in the central Arctic sea.The other versions underestimate the decadal trend of the perennial ice and overestimate that of the seasonal ice.In addition,an index used to objectively describe the difference in the spatial distribution between the simulation and observation shows that CICE6.0 produces the best simulated spatial distribution.展开更多
Glaciers in the Tomor region of Tianshan Mountains preserve vital water resources. However, these glaciers suffer from strong mass losses in the recent years because of global warming. From 2008 to 2009, a large-scale...Glaciers in the Tomor region of Tianshan Mountains preserve vital water resources. However, these glaciers suffer from strong mass losses in the recent years because of global warming. From 2008 to 2009, a large-scale scientific expedition has been carried out in this region. As an individual reference glacier, the tongue area of Qingbingtan glacier No. 72 was measured by the high precise Real Time Kinematic-Global Position System (RTK-GPS). In this paper, changes of the tongue area of Qingbingtan glacier No.72 has been studied based on topographic map, remote sensing image and the survey during 2008-2009 field campaign. Results indicated that the ice surface-elevation of the tongue area changed - 0.22~0.14 m a-1 from 1964 to 2008. The estimated loss in ice volume was 0.0144-0.009 km3, which represented a ~20 % decrease from the 1964 volume and was equivalent to average annual mass balance of -0.204-0.12 m water equivalent for the tongue area during 1964-2oo8. Terminus retreated by 1852 m, approximately 41 m a-1, with the area reduction of 1.533 km2 (0.034 km2 a-0 from 1964 to 2009. Furthermore, the annual velocity reached to -70 m a-1. Comparing with the other monitored glaciers in the eastern Tianshan Mountains, Qingbingtan glacier No.72 experienced more intensive in shrinkage, which resulted from the combined effects of climate change and glacier dynamic, providing evidence of the response to climatic warming.展开更多
A calcified roasting-acid leaching process was developed as a highly effective method for the extraction of valuable metals from low nickel matte in the presence of CaO additive. The influences of process parameters o...A calcified roasting-acid leaching process was developed as a highly effective method for the extraction of valuable metals from low nickel matte in the presence of CaO additive. The influences of process parameters on the metal extraction were studied, including the roasting temperature, roasting time, addition of CaO, H2SO4 concentration and liquid-solid ratio. Under the optimum condition, 94.2% of Ni, 98.1% of Cu, 92.2% of Co and 89.3% of Fe were recovered. Additionally, 99.6% of Fe was removed from the leachate as goethite by a subsequent goethite iron precipitation process. The behavior and mechanism of CaO additive in the roasting process was clarified. The role of CaO is to prevent the formation of nonferrous metal ferrite phases by a preferential reaction with Fe2O3 during the roasting process. The metal oxides(Cu O and NixCu1-xO) remained stable during high-temperature roasting and were subsequently efficiently leached using a sulfuric acid solution.展开更多
Glacier variations in the Tibetan Plateau and surrounding mountain ranges in China affect the livelihood of over one billion people who depend on water from the Yellow, Yangtze, Brahmaputra, Ganges and Indus rivers or...Glacier variations in the Tibetan Plateau and surrounding mountain ranges in China affect the livelihood of over one billion people who depend on water from the Yellow, Yangtze, Brahmaputra, Ganges and Indus rivers originating in these areas. Based on the results of the present study and published literature, we found that the glaciers shrank :5.7% in area from 1963 to 20:0 with an annual area change of -0.33%. The shrinkage generally decreased from peripheral mountain ranges to the interior of Tibet. The linear trends of annual air temperature and precipitation at 147 stations were 0.36℃(10a)^-1 and 8.96 mm (10a)^-1 respectively from 1961 to 2010. The shrinkage of glaciers was well correlated with the rising temperature and the spatial patterns of the shrinkage were influenced by other factors superimposed on the rising temperature such as glacier size, type, elevation, debris cover and precipitation.展开更多
Arctic sea ice is a keystone indicator of greenhouse-gas induced global climate change, which is expected to be amplified in the Arctic. Here we directly compare observed variations in arctic sea-ice extent and CO 2 s...Arctic sea ice is a keystone indicator of greenhouse-gas induced global climate change, which is expected to be amplified in the Arctic. Here we directly compare observed variations in arctic sea-ice extent and CO 2 since the beginning of the 20th century, identifying a strengthening linkage, such that in recent decades the rate of sea-ice decrease mirrors the increase in CO 2 , with r ~ -0.95 over the last four decades, thereby indicating that 90% (r 2 ~ 0.90) of the decreasing sea-ice extent is empirically "accounted for" by the increasing CO 2 in the atmosphere. The author presents an empirical relation between annual sea-ice extent and global atmospheric CO 2 concentrations, in which sea-ice reductions are linearly, inversely proportional to the magnitude of increase of CO 2 over the last few decades. This approximates sea-ice changes during the most recent four decades, with a proportionality constant of 0.030 million km 2 per ppmv CO 2 . When applied to future emission scenarios of the Intergovernmental Panel on Climate Change (IPCC), this relationship results in substantially faster ice decreases up to 2050 than predicted by IPCC models. However, departures from this projection may arise from non-linear feedback effects and/or temporary natural variations on interannual timescales, such as the record minimum of sea-ice extent observed in September 2007.展开更多
Based on the 1990, 2000 and 2011 Landsat TM/ETM+ remote sensing data, glacier information of three periods in the Chinese Tianshan Mountains were extracted by using ratio threshold method(TM3/TM5) and visual interpret...Based on the 1990, 2000 and 2011 Landsat TM/ETM+ remote sensing data, glacier information of three periods in the Chinese Tianshan Mountains were extracted by using ratio threshold method(TM3/TM5) and visual interpretation, combined with digital processing of satellite images and analysis in GIS. The climate data in the surrounding area were analyzed by using linear regression, Mann-Kendall abrupt test, and Morlet wavelet analysis. Study results showed that: over the 23 years investigation, the glacier areas have markedly decreased. In the last 12 years(2000 to 2011), the rate of retreat has begun to accelerate. The most dramatic glacier shrinkage occurred in the central region, the lowest in the eastern region. The mean summer temperature and warm precipitation in Chinese Tianshan Mountains had an increasing trend, with rates of 0.22°C /10 a and 5.1mm/10 a from 1960 to 2011, respectively. Mean summer temperature have experienced a strong increase in 1998. The analysis of the results showed that the rise of mean summer temperature was the main factor that contributed to glacier shrinkage. Regional differences of glacier area changes were investigated by analyzing glacier behavior in five study sub-regions; regional differences are related to local climate, to the relative proportion of glaciers in different size classes, altitudinal and aspect distribution of glaciated areas. In addition, the lag theory indicated that glaciers may accelerate the retreat in the next decade, considering climate trends recognized for the period 2000-2011.展开更多
Glaciers in the western Nyainqentanglha Range are an important source of water for social and economic development. Changes in their area were derived from two Chinese glacier inventories; one from the 197o 1:5o,ooo ...Glaciers in the western Nyainqentanglha Range are an important source of water for social and economic development. Changes in their area were derived from two Chinese glacier inventories; one from the 197o 1:5o,ooo scale Chinese Topographic Maps series and the other from Landsat TM/ETM+ images acquired in 2009. Analyses also included boundaries from 2000 and 2014 Landsat TM/ETM+ images. A continuing and accelerating shrinkage of glaciers occurred here from 1970 to 2014, with glacier area decreasing by 244.38±29.48 km^2 (27.4%±3.3%) or 0.62%±0.08% a^-1. While this is consistent with a changing climate, local topographic parameters, such as altitude, slope, aspect and debris cover, are also important influences. Recession is manifested by a rise in the elevation of the glacier terminus. The shrinkage of glaciers with NE, N and NW orientations exceeded that of other aspects, and glaciers with SE and S orientations experienced less shrinkage. Changes in the average positive difference of glaciation (PDG) show that the western Nyainqentanglha Range has unfavorable conditions for glacier maintenance which is being exacerbated by a warming climate since 1970.展开更多
Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (...Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (GIS) techniques, the paper presents the results of a multitemporal satellite glacier extent mapping and glacier changes by glacier sizes in the Mt. Qomolangma region at the northern slopes of the middle Himalayas over the Tibetan Plateau. Glaciers in this region have both retreated and advanced in the past 35 years, with retreat dominating. The glacier retreat area was 3.23 km2 (or o.75 km^2 yr^-1 during 1974 and 1976, 8.68 km^2 (or 0.36 km^2 yr^-1 during 1976 and 1992, 1.44 km^2 (or 0.12 km^2 yr^-1) during 1992-2ooo. 1.14 km^2 (or 0.22 km^2 yr^-1 during 2000-2003, and 0.52 km^2 (or 0.07 km^2 yr^-1 during 2003-2008, respectively. While supra-glacier lakes on the debris-terminus of the Rongbuk Glacier were enlarged dramatically at the same time, from 0.05 km^2 in 1974 increased to 0.71 km^2 in 2008, which was more than 13 times larger in the last 35 years. In addition, glacier changes also showed spatial differences, for example, glacier retreat rate was the fastest at glacier termini between 5400 and 5700 m a.s.l than at other elevations. The result also shows that glaciers in the middle Himalayas retreat almost at a same pace with those in the western Himalayas.展开更多
The future change of September Arctic sea-ice volume,simulated by 30 state-of-the-art climate models from the Coupled Model Intercomparison Project Phase 5(CMIP5),is examined,which depends on both ice extent and ice...The future change of September Arctic sea-ice volume,simulated by 30 state-of-the-art climate models from the Coupled Model Intercomparison Project Phase 5(CMIP5),is examined,which depends on both ice extent and ice thickness.In comparison with the September sea-ice extent,the September sea-ice volume has larger spread in the historical simulation but faster convergence in the projection simulation,especially in the context of increasing greenhouse gas emissions.This indicates that the ice volume might be more sensitive to external forcings than the ice extent.Using the averaged projection of those climate models from the 30 CMIP5 models that can better reflect the ‘observed' sea-ice volume climatology and variability,it is shown that the September sea ice volume will decrease to ~3000 km3 in the early 2060 s,and then level off under a medium-mitigation scenario.However,it will drop to ~3000 km3 in the early 2040 s and reach a near-zero ice volume in the mid-2070 s under a high-emission scenario.With respect to the historical condition,the reduction of the ice volume,associated with increasing greenhouse gas emissions,is more rapid than that of the ice extent during the twenty-first century.展开更多
Based on the flood affected area (FA) data of the provinces in China from 1950 to 2005, the article discusses the change of the flood patterns in China, and investigates its relationship with climate change and huma...Based on the flood affected area (FA) data of the provinces in China from 1950 to 2005, the article discusses the change of the flood patterns in China, and investigates its relationship with climate change and human activities. The flood center shifted from North China and the Yangtze-Huaihe basin in the 1950s towards the south, north and west of China, and located in the south of the Yangtze River and South China after the 1990s. The FA in the western provinces was continuously on the rise since the 1950s. There are two characteristics for the future flood pattem in China. The pattern of "flood in the south and drought in the north" depends on the north-south shift of the maximum rainfall region in eastern China. The flood intensification to the west of Hu Huanyong's line mainly results from the increase of rainfall, extreme precipitation and the melting of glaciers under the background of human activity magnification.展开更多
Recent studies on glaciers in the West Kunlun Shan, northwest Tibetan Plateau, have shown that they may be stable or retreating slightly. Here, we assess changes in the mass of the glaciers in the West Kunlun Shan(WKS...Recent studies on glaciers in the West Kunlun Shan, northwest Tibetan Plateau, have shown that they may be stable or retreating slightly. Here, we assess changes in the mass of the glaciers in the West Kunlun Shan(WKS) in an attempt to understand the processes that control their behavior. Glaciers over the recent 40 years(1970-2010) have shrunk 3.4±3.1%in area, based on a comparison between two Chinese glacier inventories. Variations of surface elevations, derived from ICESat-GLAS(Ice, Cloud, and Land Elevation Satellite-Geoscience Laser Altimeter System) elevation products(GLA14 data) using the robust linear-fit method, indicate that the glaciers have been gaining mass at a rate of 0.23±0.24 m w.e./a since 2003. The annual mass budget for the whole WKS range from 2003 to 2009 is estimated to be 0.71±0.62 Gt/a. This gain trend is confirmed by MOD10A1 albedo for the WKS region which shows a descent of the mean snowline altitude from 2003 to 2009.展开更多
The present study is an investigation of the properties of poly(vinyl alcohol),which would be a better contact lens mate- rial than conventional HEMA in some ways.A transparent PVA hydrogel was prepared from a PVA sol...The present study is an investigation of the properties of poly(vinyl alcohol),which would be a better contact lens mate- rial than conventional HEMA in some ways.A transparent PVA hydrogel was prepared from a PVA solution in a mixed solvent consisting of water and a water-miscible organic solvent,DMSO,by the freezing-thawing method.The water content,visible light transmittance,mechanical and swelling properties of the hydrogels were evaluated as a function of PVA concentration and number of freeze-thaw cycles.The results show that the properties of PVA hydrogels depend on the polymer concentration,the number of freeze-thaw cycles and the addition of the organic solvent.展开更多
Mountain glaciers in China are an important water source for both China and adjoining countries, and therefore their adaptation to glacier change is crucial in relation to maintaining populations. This study aims to i...Mountain glaciers in China are an important water source for both China and adjoining countries, and therefore their adaptation to glacier change is crucial in relation to maintaining populations. This study aims to improve our understanding of glacial vulnerability to climate change to establish adaptation strategies. A glacial numerical model is developed using spatial principle component analysis (SPCA) supported by remote sensing (RS) and geographical information system (GIS) technologies. The model contains nine factors--slope, aspect, hillshade, elevation a.s.l., air temperature, precipitation, glacial area change percentage, glacial type and glacial area, describing topography, climate, and glacier characteristics. The vulnerability of glaciers to climate change is evaluated during the period of 1961-2007 on a regional scale, and in the 2030s and 2050s based on projections of air temperature and precipitation changes under the IPCC RCP6.0 scenario and of glacier change in the 21st century. Glacial vulnerability is graded into five levels: potential, light, medial, heavy, and very heavy, using natural breaks classification (NBC). The spatial distribution of glacial vulnerability and its temporal changes in the 21st century for the RCP6.0 scenario are analyzed, and the factors influencing vulnerability are discussed. Results show that mountain glaciers in China are very vulnerable to climate change, and 41.2% of glacial areas fall into the levels of heavy and very heavy vulnerability in the period 1961-2007. This is mainly explained by topographical exposure and the high sensitivity of glaciers to climate change. Trends of glacial vulnerability are projected to decline in the 2030s and 2050s, but a declining trend is still high in some regions. In addition to topographical factors, variation in precipitation in the 2030s and 2050s is found to be crucial.展开更多
基金Supported by Foundation for Returned Scholars of Hebei Province(2010)Research Fund for the Doctoral Program of Hebei Normal University(L2009B13)~~
文摘[Objective] The aim of the research was to study the effect of the ice bath time after heat shock and the incubation time on the transformation efficacy,and to establish a simple and quick transformation method.[Method]Competent cells were prepared with two buffer solutions;with the ice bath time after heat shock and the recovery time as the variables,the relationship between these two factors and transformation efficacy was studied.[Result]The transformation efficacy was the best when the ice bath time was 2 min and the recovery time was 30 or 40 min;when the ice bath time and the recovery time was 0 min,a certain amount of transformants still could be obtained.[Conclusion]The ice bath time after heat shock and the recovery time had certain impact on transformation efficacy,but they were not the decisive factors.Therefore,in the general transformation experiment,these two steps could be omitted.
文摘According to conventional theory, little genomic changes should occur in homozygous and stable amphiploids of the grass family, particularly those involving polyploid wheat as a parent. In the present study, however, extensive genomic changes were detected in two octoploid partial amphiploids of common wheat (Triticum aestivum L.)_wheatgrass (Agropyron intermedium (Host) P.B.=Elytrigia intermedia (Host) Nevski=Thinopyrum intermedium (Host) Barkworth and Dewey), namely Zhong 3 and Zhong 5, by RFLP analysis using 10 low_copy, wheat chromosome_specific sequences and 33 representative homoeologous group_specific sequences as probes. Genomic changes involved loss of wheat hybridization fragment(s) and/or acquisition of new fragment(s). Uniformity of the RFLP patterns among 5 individual plants taken respectively from Zhong 3 and Zhong 5 in two successive generations, suggested that genomic changes probably had occurred in the early few generations after octoploid amphiploid formation, and remained essentially static thereafter. The highly similar RFLP patterns between Zhong 3 and Zhong 5, which had identical genomic constitution but differed from each other due to involvement of different wheat varieties as parents imply that genomic changes were probably not at random. Possible causes for the extensive and rapid genomic changes in the newly formed plant amphiploids, as well as their implications for polyploid genome evolution and breeding application are discussed.
基金supported by the National Natural Science Foundation of China(No.41075030,41106004,41106159 and 41206013)the Ocean Public Welfare Science Research Project,State Oceanic Administration,People's Republic of China(No.201005019)
文摘In this study, we mainly introduce two salinity parameterization schemes used in Sea Ice Simulator (SIS), that is, isosaline scheme and salinity profile scheme. Comparing the equation of isosaline scheme with that of salinity profile scheme, we found that there was one different term between the two schemes named the salinity different term. The thermodynamic effect of the salinity difference term on sea ice thickness and sea ice concentration showed that: in the freezing processes from November to next May, the sea ice temperature could rise on the influence of the salinity difference term and restrain sea ice freezing; at the first melting phase from June to August, the upper ice melting rate was faster than the lower ice melting rate. Then sea ice temperature could rise and accelerate the sea ice melting; at the second melting phase from September to October, the upper ice melting rate was slower than the lower ice melting rate, then sea ice temperature could decrease and restrain sea ice melting. However, the effect of the salinity difference term on the sea ice thickness and sea ice concentration was weak. To analyze the impacts of the salinity different term on Arctic sea ice thickness and sea ice concentration, we also designed several experiments by introducing the two salinity parameterizations to the ice-ocean coupled model, Modular Ocean Model (MOM4), respectively. The simulated results confirmed the previous results of formula derivation.
基金supported by the Science and Technology Assistance Agency (APVV-0460-10 and SK-CN-0029-12)Slovak Grant Agency (VEGA 2/0116/14 and VEGA 2/0095/12)+2 种基金the National Natural Science Foundation of China (51322406)the Program for New Century Excellent Talents (NCET-13-0107)Ministry of Education of China
文摘Electrical conductivity of molten binary and ternary mixtures based on the system NaF-AlF3-SiO2 was investigated by means of a tube–cell (made of pyrolytic boron nitride) with stationary electrodes. Viscosity of the binary system Na3AlF6-SiO2 was measured by computerized torsion pendulum method. It was found that conductivity and viscosity varied linearly with temperature in all investigated mixtures. Obtained content dependence of electrical conductivity (isotherms) was divided into two parts. First, one represented the content region up to 10%(mole fraction) of SiO2;second, the region was with a higher content of SiO2 (from 10%up to 40%). While the conductivity considerably decreased with content of SiO2 in the second part; it surprisingly rose in the low content range. A small addition of SiO2 to the molten cryolite (up to 10%) could slightly increase viscosity, but had no influence on the slope of this dependence since it is responsible for a glassy-networks formation in the melt. Further addition of SiO2 to the molten cryolite had a huge effect on the viscosity.
基金This research is supported jointly by the National Key R&D Program of China[grant numbers 2016YFA0602100 and 2018YFC1407104]the china Special Fund for Meteorological Research in the Public Interest[grant number GYHY201506011]the National Natural Science Foundation of China[grant number 41975134].
文摘The Los Alamos Sea-Ice Model(CICE)is one of the most popular sea-ice models.All versions of it have been the main sea-ice module coupled to climate system models.Therefore,evaluating their simulation capability is an important step in developing climate system models.Compared with observations and previous versions(CICE4.0 and CICE5.0),the advantages of CICE6.0(the latest version)are analyzed in this paper.It is found that CICE6.0 has the minimum interannual errors,and the seasonal cycle it simulates is the most consistent with observations.CICE4.0 overestimates winter sea-ice and underestimates summer sea-ice severely.Meanwhile,the errors of CICE5.0 in winter are larger than for the other versions.The main attention is paid to the perennial ice and the seasonal ice.The spatial distribution of root-mean-square errors indicates that the simulated errors are distributed in the Atlantic sector and the outer Arctic.Both CICE4.0 and CICE5.0 underestimate the concentration of the perennial ice and overestimate that of the seasonal ice in these areas.Meanwhile,CICE6.0 solves this problem commendably.Moreover,the decadal trends it simulates are comparatively the best,especially in the central Arctic sea.The other versions underestimate the decadal trend of the perennial ice and overestimate that of the seasonal ice.In addition,an index used to objectively describe the difference in the spatial distribution between the simulation and observation shows that CICE6.0 produces the best simulated spatial distribution.
基金jointly supported by National Key Project for Basic Research of China (Grant No.2010CB951003)Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No.No.KZCX2-EW-311)National Natural Science Foundation of China (Grant Nos.40631001,41001040,41101066)
文摘Glaciers in the Tomor region of Tianshan Mountains preserve vital water resources. However, these glaciers suffer from strong mass losses in the recent years because of global warming. From 2008 to 2009, a large-scale scientific expedition has been carried out in this region. As an individual reference glacier, the tongue area of Qingbingtan glacier No. 72 was measured by the high precise Real Time Kinematic-Global Position System (RTK-GPS). In this paper, changes of the tongue area of Qingbingtan glacier No.72 has been studied based on topographic map, remote sensing image and the survey during 2008-2009 field campaign. Results indicated that the ice surface-elevation of the tongue area changed - 0.22~0.14 m a-1 from 1964 to 2008. The estimated loss in ice volume was 0.0144-0.009 km3, which represented a ~20 % decrease from the 1964 volume and was equivalent to average annual mass balance of -0.204-0.12 m water equivalent for the tongue area during 1964-2oo8. Terminus retreated by 1852 m, approximately 41 m a-1, with the area reduction of 1.533 km2 (0.034 km2 a-0 from 1964 to 2009. Furthermore, the annual velocity reached to -70 m a-1. Comparing with the other monitored glaciers in the eastern Tianshan Mountains, Qingbingtan glacier No.72 experienced more intensive in shrinkage, which resulted from the combined effects of climate change and glacier dynamic, providing evidence of the response to climatic warming.
基金Projects(U1860203,U1860108,51574164) supported by the National Natural Science Foundation of China
文摘A calcified roasting-acid leaching process was developed as a highly effective method for the extraction of valuable metals from low nickel matte in the presence of CaO additive. The influences of process parameters on the metal extraction were studied, including the roasting temperature, roasting time, addition of CaO, H2SO4 concentration and liquid-solid ratio. Under the optimum condition, 94.2% of Ni, 98.1% of Cu, 92.2% of Co and 89.3% of Fe were recovered. Additionally, 99.6% of Fe was removed from the leachate as goethite by a subsequent goethite iron precipitation process. The behavior and mechanism of CaO additive in the roasting process was clarified. The role of CaO is to prevent the formation of nonferrous metal ferrite phases by a preferential reaction with Fe2O3 during the roasting process. The metal oxides(Cu O and NixCu1-xO) remained stable during high-temperature roasting and were subsequently efficiently leached using a sulfuric acid solution.
基金supported by the National Science Foundation of China (Grant Nos. 40871057 and 41271024)CAAS Project Innovation (2016-2020)+1 种基金IARRP (2016-637-1)Tianjin Philosophy and Social Science Planning Project (TJGL15-028)
文摘Glacier variations in the Tibetan Plateau and surrounding mountain ranges in China affect the livelihood of over one billion people who depend on water from the Yellow, Yangtze, Brahmaputra, Ganges and Indus rivers originating in these areas. Based on the results of the present study and published literature, we found that the glaciers shrank :5.7% in area from 1963 to 20:0 with an annual area change of -0.33%. The shrinkage generally decreased from peripheral mountain ranges to the interior of Tibet. The linear trends of annual air temperature and precipitation at 147 stations were 0.36℃(10a)^-1 and 8.96 mm (10a)^-1 respectively from 1961 to 2010. The shrinkage of glaciers was well correlated with the rising temperature and the spatial patterns of the shrinkage were influenced by other factors superimposed on the rising temperature such as glacier size, type, elevation, debris cover and precipitation.
基金supported by the Mohn-Sverdrup Center for Global Ocean StudiesOperational Oceanography at the Nansen Center and the Research Council of Norway+1 种基金is a contribution to the International Polar Year―Climate of the Arcticits Role for Europe (IPY-CARE) project, headed by the author
文摘Arctic sea ice is a keystone indicator of greenhouse-gas induced global climate change, which is expected to be amplified in the Arctic. Here we directly compare observed variations in arctic sea-ice extent and CO 2 since the beginning of the 20th century, identifying a strengthening linkage, such that in recent decades the rate of sea-ice decrease mirrors the increase in CO 2 , with r ~ -0.95 over the last four decades, thereby indicating that 90% (r 2 ~ 0.90) of the decreasing sea-ice extent is empirically "accounted for" by the increasing CO 2 in the atmosphere. The author presents an empirical relation between annual sea-ice extent and global atmospheric CO 2 concentrations, in which sea-ice reductions are linearly, inversely proportional to the magnitude of increase of CO 2 over the last few decades. This approximates sea-ice changes during the most recent four decades, with a proportionality constant of 0.030 million km 2 per ppmv CO 2 . When applied to future emission scenarios of the Intergovernmental Panel on Climate Change (IPCC), this relationship results in substantially faster ice decreases up to 2050 than predicted by IPCC models. However, departures from this projection may arise from non-linear feedback effects and/or temporary natural variations on interannual timescales, such as the record minimum of sea-ice extent observed in September 2007.
基金supported by the National Science Foundation of China (Grant No. 41271024)the Fund Project for National Basic Science Talents Cultivation (Grant No. J1210065)the Fundamental Research Funds for the Central Universities- Excellent Graduate Innovation Project (Grant No. Lzujbky-2014-274)
文摘Based on the 1990, 2000 and 2011 Landsat TM/ETM+ remote sensing data, glacier information of three periods in the Chinese Tianshan Mountains were extracted by using ratio threshold method(TM3/TM5) and visual interpretation, combined with digital processing of satellite images and analysis in GIS. The climate data in the surrounding area were analyzed by using linear regression, Mann-Kendall abrupt test, and Morlet wavelet analysis. Study results showed that: over the 23 years investigation, the glacier areas have markedly decreased. In the last 12 years(2000 to 2011), the rate of retreat has begun to accelerate. The most dramatic glacier shrinkage occurred in the central region, the lowest in the eastern region. The mean summer temperature and warm precipitation in Chinese Tianshan Mountains had an increasing trend, with rates of 0.22°C /10 a and 5.1mm/10 a from 1960 to 2011, respectively. Mean summer temperature have experienced a strong increase in 1998. The analysis of the results showed that the rise of mean summer temperature was the main factor that contributed to glacier shrinkage. Regional differences of glacier area changes were investigated by analyzing glacier behavior in five study sub-regions; regional differences are related to local climate, to the relative proportion of glaciers in different size classes, altitudinal and aspect distribution of glaciated areas. In addition, the lag theory indicated that glaciers may accelerate the retreat in the next decade, considering climate trends recognized for the period 2000-2011.
基金supported by the fundamental program from the Ministry of Science and Technology of China(MOST)(Grant No.2013FY111400)the National Natural Science Foundation of China(Grant No.41190084)+1 种基金the MOST Technology Oriented Project(Grant No.2012BAC19B07)The second Chinese Glacier Inventory was a product of the previous MOST Project(Grant No.2006FY110200)
文摘Glaciers in the western Nyainqentanglha Range are an important source of water for social and economic development. Changes in their area were derived from two Chinese glacier inventories; one from the 197o 1:5o,ooo scale Chinese Topographic Maps series and the other from Landsat TM/ETM+ images acquired in 2009. Analyses also included boundaries from 2000 and 2014 Landsat TM/ETM+ images. A continuing and accelerating shrinkage of glaciers occurred here from 1970 to 2014, with glacier area decreasing by 244.38±29.48 km^2 (27.4%±3.3%) or 0.62%±0.08% a^-1. While this is consistent with a changing climate, local topographic parameters, such as altitude, slope, aspect and debris cover, are also important influences. Recession is manifested by a rise in the elevation of the glacier terminus. The shrinkage of glaciers with NE, N and NW orientations exceeded that of other aspects, and glaciers with SE and S orientations experienced less shrinkage. Changes in the average positive difference of glaciation (PDG) show that the western Nyainqentanglha Range has unfavorable conditions for glacier maintenance which is being exacerbated by a warming climate since 1970.
基金supported by the National Natural Science Foundation of China (40601056, 40121101)the Special Funds for Major State Basic Research Project (2009CB723901)+4 种基金the Special Science Foundation on Meteorological Project Research for Public Benefit (GYHY(QX)2007-6-18)the Survey Project on Glacier resources and their changes in China (No.2006FY110200)the Opening Fund projects of State Key Laboratory of Remote Sensing Science in the Institute of Remote Sensing Applicationsthe innovative project of Institute of Tibetan Plateau Research (ITPR),CASthrough a cooperation project between the Climate Change Institute, University of Maine supported by the National Oceanic and Atmospheric Administration (NA04OAR4600179) and the Institute of Tibetan Plateau Research (ITPR), CAS
文摘Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (GIS) techniques, the paper presents the results of a multitemporal satellite glacier extent mapping and glacier changes by glacier sizes in the Mt. Qomolangma region at the northern slopes of the middle Himalayas over the Tibetan Plateau. Glaciers in this region have both retreated and advanced in the past 35 years, with retreat dominating. The glacier retreat area was 3.23 km2 (or o.75 km^2 yr^-1 during 1974 and 1976, 8.68 km^2 (or 0.36 km^2 yr^-1 during 1976 and 1992, 1.44 km^2 (or 0.12 km^2 yr^-1) during 1992-2ooo. 1.14 km^2 (or 0.22 km^2 yr^-1 during 2000-2003, and 0.52 km^2 (or 0.07 km^2 yr^-1 during 2003-2008, respectively. While supra-glacier lakes on the debris-terminus of the Rongbuk Glacier were enlarged dramatically at the same time, from 0.05 km^2 in 1974 increased to 0.71 km^2 in 2008, which was more than 13 times larger in the last 35 years. In addition, glacier changes also showed spatial differences, for example, glacier retreat rate was the fastest at glacier termini between 5400 and 5700 m a.s.l than at other elevations. The result also shows that glaciers in the middle Himalayas retreat almost at a same pace with those in the western Himalayas.
基金supported by the National Natural Science Foundation of China[grant numbers 41305097 and 41176169]the National Basic Research Program of China[973 program,grant number 2011CB309704]
文摘The future change of September Arctic sea-ice volume,simulated by 30 state-of-the-art climate models from the Coupled Model Intercomparison Project Phase 5(CMIP5),is examined,which depends on both ice extent and ice thickness.In comparison with the September sea-ice extent,the September sea-ice volume has larger spread in the historical simulation but faster convergence in the projection simulation,especially in the context of increasing greenhouse gas emissions.This indicates that the ice volume might be more sensitive to external forcings than the ice extent.Using the averaged projection of those climate models from the 30 CMIP5 models that can better reflect the ‘observed' sea-ice volume climatology and variability,it is shown that the September sea ice volume will decrease to ~3000 km3 in the early 2060 s,and then level off under a medium-mitigation scenario.However,it will drop to ~3000 km3 in the early 2040 s and reach a near-zero ice volume in the mid-2070 s under a high-emission scenario.With respect to the historical condition,the reduction of the ice volume,associated with increasing greenhouse gas emissions,is more rapid than that of the ice extent during the twenty-first century.
基金funded by the key program of National Natural Science Foundation of China (Grant No.40730635)Commonweal and Specialized Program for Scientific Research,Ministry of Water Resources of China (Grant No.2007011024)
文摘Based on the flood affected area (FA) data of the provinces in China from 1950 to 2005, the article discusses the change of the flood patterns in China, and investigates its relationship with climate change and human activities. The flood center shifted from North China and the Yangtze-Huaihe basin in the 1950s towards the south, north and west of China, and located in the south of the Yangtze River and South China after the 1990s. The FA in the western provinces was continuously on the rise since the 1950s. There are two characteristics for the future flood pattem in China. The pattern of "flood in the south and drought in the north" depends on the north-south shift of the maximum rainfall region in eastern China. The flood intensification to the west of Hu Huanyong's line mainly results from the increase of rainfall, extreme precipitation and the melting of glaciers under the background of human activity magnification.
基金supported by a National Science Foundation of China major project (Grant No. 41190084) funded by the National Natural Science Foundation of Chinathe National Key Technology R&D Program (Grant No. 2012BAC19B07)+2 种基金the International S&T Cooperation Program of the Ministry of Science and Technology of China (Grant No. 2010DFA92720-23)provided by the MOST (Grant No. 2006FY110200)CAS projects (Grant No. KZCX2-YW-301)
文摘Recent studies on glaciers in the West Kunlun Shan, northwest Tibetan Plateau, have shown that they may be stable or retreating slightly. Here, we assess changes in the mass of the glaciers in the West Kunlun Shan(WKS) in an attempt to understand the processes that control their behavior. Glaciers over the recent 40 years(1970-2010) have shrunk 3.4±3.1%in area, based on a comparison between two Chinese glacier inventories. Variations of surface elevations, derived from ICESat-GLAS(Ice, Cloud, and Land Elevation Satellite-Geoscience Laser Altimeter System) elevation products(GLA14 data) using the robust linear-fit method, indicate that the glaciers have been gaining mass at a rate of 0.23±0.24 m w.e./a since 2003. The annual mass budget for the whole WKS range from 2003 to 2009 is estimated to be 0.71±0.62 Gt/a. This gain trend is confirmed by MOD10A1 albedo for the WKS region which shows a descent of the mean snowline altitude from 2003 to 2009.
基金Projects 50575106 supported by the National Natural Science Foundation of ChinaBG2007046 by the High Technology Project of Jiangsu Province
文摘The present study is an investigation of the properties of poly(vinyl alcohol),which would be a better contact lens mate- rial than conventional HEMA in some ways.A transparent PVA hydrogel was prepared from a PVA solution in a mixed solvent consisting of water and a water-miscible organic solvent,DMSO,by the freezing-thawing method.The water content,visible light transmittance,mechanical and swelling properties of the hydrogels were evaluated as a function of PVA concentration and number of freeze-thaw cycles.The results show that the properties of PVA hydrogels depend on the polymer concentration,the number of freeze-thaw cycles and the addition of the organic solvent.
基金supported by grants from the National Basic Research Program of China (2013CBA01808)the National Natural Science Foundation of China (41271088)
文摘Mountain glaciers in China are an important water source for both China and adjoining countries, and therefore their adaptation to glacier change is crucial in relation to maintaining populations. This study aims to improve our understanding of glacial vulnerability to climate change to establish adaptation strategies. A glacial numerical model is developed using spatial principle component analysis (SPCA) supported by remote sensing (RS) and geographical information system (GIS) technologies. The model contains nine factors--slope, aspect, hillshade, elevation a.s.l., air temperature, precipitation, glacial area change percentage, glacial type and glacial area, describing topography, climate, and glacier characteristics. The vulnerability of glaciers to climate change is evaluated during the period of 1961-2007 on a regional scale, and in the 2030s and 2050s based on projections of air temperature and precipitation changes under the IPCC RCP6.0 scenario and of glacier change in the 21st century. Glacial vulnerability is graded into five levels: potential, light, medial, heavy, and very heavy, using natural breaks classification (NBC). The spatial distribution of glacial vulnerability and its temporal changes in the 21st century for the RCP6.0 scenario are analyzed, and the factors influencing vulnerability are discussed. Results show that mountain glaciers in China are very vulnerable to climate change, and 41.2% of glacial areas fall into the levels of heavy and very heavy vulnerability in the period 1961-2007. This is mainly explained by topographical exposure and the high sensitivity of glaciers to climate change. Trends of glacial vulnerability are projected to decline in the 2030s and 2050s, but a declining trend is still high in some regions. In addition to topographical factors, variation in precipitation in the 2030s and 2050s is found to be crucial.