Both marginal fluctuation and areal change were used to detect the accurate dynamics of glacier change in the study area using Landsat MSS, ETM, SPOT HRV and topographic maps based on GIS. From 1963 to 1977, four of e...Both marginal fluctuation and areal change were used to detect the accurate dynamics of glacier change in the study area using Landsat MSS, ETM, SPOT HRV and topographic maps based on GIS. From 1963 to 1977, four of eight glaciers advanced, two of them retreated and another two kept stable, the glacier advanced generally. From 1977 to 1986, four of eight glaciers retreated and the others kept stable, but the retreated glaciers were those which advanced from 1963 to 1977. From 1986 to 2000, seven of eight glaciers retreated and only one glacier kept stable, the retreating velocity was 10-15 m/a. Glacier recession in this period became very fast and universal. From 1963 to 2000, the area of glaciers decreased from 5479.0 ha to 4795.4 ha, up to 12.5%. It is alarming that most of glacier retreats happened from 1986 to 2000. This was very consistent with change process of summer mean temperature in this region and global warming beginning in the 1980s.展开更多
High-resolution imagery can be used to reconstruct former glacier boundaries through the identification of glacial erosional and sedimentary geomorphology. We employed moraine mapping and the accumulation–area ratio ...High-resolution imagery can be used to reconstruct former glacier boundaries through the identification of glacial erosional and sedimentary geomorphology. We employed moraine mapping and the accumulation–area ratio method(AAR), in conjunction with Landsat, Google Earth, and SRTM imagery, to reconstruct glacier boundaries and equilibrium-line altitudes(ELAs) for Mt. Kenya in the Last Glacial Maximum(LGM), the Little Ice Age(LIA), and at present. Our results show that the areas of Lewis Glacier and the Tyndall-I glacier system were 0.678 km^2 and 0.390 km^2, respectively, during the maximum of LIA. Those mean that the both glaciers have shrunken by 87.0% and 88.7%, respectively since the LIA. Area change ratios for each glacier were significantly larger in the period of 2000 through 2015 than the former periods, indicating that glacier recession has accelerated. Continuous ice loss in this region has been driven by rising temperature and fluctuating precipitation. Linear regression data for Lewis glacier show that mass balance sensitivity to dry season temperature was –315 mm w.e./℃, whereas the sensitivity to dry season precipitation was 5.2 mm w.e./mm. Our data also show that the ELA on the western slope of Mt. Kenya rose by 716-816 m from the LGM to the modern era, corresponding to that temperature rose by 5.2℃-6.5℃.展开更多
Glacier runoff in mountain areas of the Shiyang River Basin(SRB), Qilian Mountain, western China is important for the river and water supply downstream. Small glaciers with area of less than 1km2 are dominant(87%) in ...Glacier runoff in mountain areas of the Shiyang River Basin(SRB), Qilian Mountain, western China is important for the river and water supply downstream. Small glaciers with area of less than 1km2 are dominant(87%) in the SRB. A modified monthly degree-day model was applied to quantify the glacier mass balance, area, and changes in glacier runoff in the SRB during 1961–2050. The comparison between the simulated and observed snow line altitude, annual glacier runoff, and mass balance from1961 to 2008 suggests that the degree-day model may be used to analyze the long-term change of glacier mass balance and runoff in the SRB. The glacier accumulation shows a significant(p<0.01) decreasing trend of-0.830 mm a-1. The mass balance also shows a significant(p<0.01) decreasing trend of-5.521 mm a-1. The glacier total runoff has significantly(p<0.05)increased by 0.079 × 105 m3 from 1961 to 2008. The monthly precipitation and air temperature are projected to significant(p<0.005) increase during2015 to 2050 under three different scenarios. The ablation is projected to significant(p<0.001) increase,while the accumulation has no significant(p=0.05)trend. The mass balance is projected to decrease, theglacier area is projected to decrease, and the glacier runoff depth is projected to increase. However, the glacier total runoff is projected to decrease. These results indicate that the glacier total runoff over glacier areas observed in 1970 reached its peak in the 2000 s. This will exacerbate the contradiction between water supply and downstream water demands in the SRB.展开更多
To evaluate isotopic tracers at natural abundances by providing basic isotope data of the hydrological investigations and assessing the impacts of different factors on the water cycle, a total of 197 water samples wer...To evaluate isotopic tracers at natural abundances by providing basic isotope data of the hydrological investigations and assessing the impacts of different factors on the water cycle, a total of 197 water samples were collected from the Laohugou Glacial catchment in the Shule River basin northwestern China during the 2013 ablation seasons and analyzed their H- and O-isotope composition. The results showed that the isotopic composition of precipitation in the Qilianshan Station in the Laohugou Glacial catchment was remarkable variability. Correspondingly, a higher slope of δ180-δD diagram, with an average of 8.74, is obtained based on the precipitation samples collected on the Glacier No.la, mainly attributed to the lower temperature on the glacier surface. Because of percolation and elution, the bottom of the firn the isotopic composition at is nearly steady. The 6180 /altitude gradients for precipitation and melt water were -o.37%o/100 m and -o.34%o/100 m, respectively Exposed to the air and influenced by strong ablation and evaporation, the isotopic values and the 6180 vs 6D diagram of the glacial surface ice show no altitudinal effect, indicating that glacier ice has the similar origins with the firn. The variation of isotopic composition in the melt water, varying from -l0.7‰ to -16.9‰ (8180) and from -61.1%o to -122.1%o (6D) indicates the recharging of snowmelt and glacial ice melt water produced at different altitudes. With a mean value of -13.3‰ for 8180 and -89.7‰ for 8D, the isotopic composition of the stream water is much closer to the melt water, indicating that stream water is mainly recharged by the ablation water. Our results of the stable isotopic compositions in natural water in the Laohugou Glacial catchment indicate the fractionations and the smoothing fluctuations of the stable isotopes during evaporation, infiltration and mixture.展开更多
The borders of Illinois were established when Illinois became a state in 1818. The western border was delineated using the Mississippi River, and the Ohio River was used as the southern border. The eastern border was ...The borders of Illinois were established when Illinois became a state in 1818. The western border was delineated using the Mississippi River, and the Ohio River was used as the southern border. The eastern border was formed by the Ohio and Wabash Rivers plus the line along latitude 42030'30'' connecting the Wabash River to Lake Michigan. As initially proposed, the northern border of Illinois would have been 82 km (51 mi) to the south of the current longitude line of 87~31 '. This 2,160,000 ha (5,440,000 ac) addition to Illinois resulted in the territory having the required minimum of 40,000 people to qualify as a state. The northern border was moved to allow the linkage of the Great Lakes shipping route to the Illinois and Mississippi River navigation channels. Illinois thus gained a valuable shoreline on Lake Michigan and a location for a shipping port hub which became Chicago. Initially the transfer of goods between these waterways required a portage, but later a shipping canal was created to link the waterways. During the Civil War, Union forces used the connected waterway systems as a northern supply route to avoid the contested Ohio River.展开更多
During the 1992-1993 joint Australian-Chinese over-snow traverse of thewestern Lambert Glacier Basin (LGB), two firn cores were drilled respectively at MGA and LGB16.During the 1996-1997 and 1997-1998 austral summers,...During the 1992-1993 joint Australian-Chinese over-snow traverse of thewestern Lambert Glacier Basin (LGB), two firn cores were drilled respectively at MGA and LGB16.During the 1996-1997 and 1997-1998 austral summers, two firn cores were drilled respectively atDT001 and DT085 on the eastern LGB. Based on the measurements made during the expeditions, theclimatic and environmental features on both sides of the LGB have been studied. Results show thatduring the past 50 years, the trends of both air temperature and accumulation rate show a slightincrease on the east side of the LGB, in contrast to the west side of the LGB. The spatial trends ofthe accumulation rate measured by accumulation canes at 2 km intervals along the nearly 500 km ofthe traverse lines on both sides of the LGB are different. Moreover, correlations of δ^(18)O vsT_(10) along the two sides of the LGB are also different. In addition, the variations of sea saltion concentrations show different trends in the past 50 years. All the evidence shows that theLambert Glacier is a dividing region for the different climatic regimes over the East Antarctic icesheet, which may be due to different moisture resources resulting from special local circumfluencesuch as cyclone activities, local terrain influences.展开更多
Changes in glacial lakes and the consequences of these changes, particularly on the development of water resources and management of glacial lake outburst flood(GLOF) risk, has become one of the challenges in the sust...Changes in glacial lakes and the consequences of these changes, particularly on the development of water resources and management of glacial lake outburst flood(GLOF) risk, has become one of the challenges in the sustainable development of high mountain areas in the context of global warming. This paper presents the findings of a study on the distribution of, and area changes in, glacial lakes in the Koshi basin in the central Himalayas.Data on the number of glacial lakes and their area was generated for the years 1977, 1990, 2000, and 2010 using Landsat satellite images. According to the glacial lake inventory in 2010, there were a total of 2168 glacial lakes with a total area of 127.61 km^2 and average size of 0.06 km^2 in the Koshi basin. Of these,47% were moraine dammed lakes, 34.8% bedrock dammed lakes and 17.7% ice dammed lakes. The number of glacial lakes increased consistently over the study period from 1160 in 1977 to 2168 in 2010, an overall growth rate of 86.9%. The area of glacial lakes also increased from 94.44 km^2 in 1977 to 127.61 km^2 in 2010, a growth rate of 35.1%. A large number of glacial lakes in the inventory are small in size(≤ 0.1km^2). End moraine dammed lakes with area greater than 0.1 km^2 were selected to analyze the change characteristics of glacial lakes in the basin. The results show that, in 2010, there were 129 lakes greater than 0.1 km^2 in area; these lakes had a total area of 42.92km^2 in 1997, increasing to 63.28 km^2 in 2010. The distribution of lakes on the north side of the Himalayas(in China) was three times higher than on the south side of the Himalayas(in Nepal).Comparing the mean growth rate in area for the 33 year study period(1977-2010), the growth rate on the north side was found to be a little slower than that on the south side. A total of 42 glacial lakes with an area greater than 0.2 km^2 are rapidly growing between 1977 and 2010 in the Koshi basin, which need to be paid more attention to monitoring in the future and to identify how critical they are in terms of GLOF.展开更多
Well-preserved Late Glacial moraines in the Barenduo and Yuqiongqu valleys on the eastern slope of the Samdainkangsang Peak present an opportunity to reconstruct glacier extents and examine the character of the climat...Well-preserved Late Glacial moraines in the Barenduo and Yuqiongqu valleys on the eastern slope of the Samdainkangsang Peak present an opportunity to reconstruct glacier extents and examine the character of the climate during the Late Glacial stage in the Nyaiqentanggulha Mountains. This study employs a coupled mass-balance and ice-flow model to reconstruct the glacier extents in the two valleys and assess the magnitudes of temperature and precipitation change during the Late Glacial period. Model results indicate that during the Late Glacial, the Barenduo valley contained an ice volume of 1.67x 108 m3, with the equilibrium-line altitude (ELA) being -5500 m asl; and the Yuqiongqu valley had an ice volume of 5.56x 108 m3, with the ELA being -5470 m asl. A climate scenario, temperature depression of 2.6-2.8°C and 60-70%, percent of modern (1981-2010) precipitation, can sustain both of the Late Glacial glacier extents in the two valleys. A 50% increase or decrease from modern precipitation would have been coupled with the respective Late Glacial temperature depressions of 1.6 and 3.0°C in the Barenduo valley, and 2.1 and 2.8°C in the Yuqiongqu valley.展开更多
基金National Natural Science Foundation of China No.40101028+2 种基金 Knowledge Innovation Project of the Geographic Sciences and Natural Resources Research CAS No.CXIOG-D02-02
文摘Both marginal fluctuation and areal change were used to detect the accurate dynamics of glacier change in the study area using Landsat MSS, ETM, SPOT HRV and topographic maps based on GIS. From 1963 to 1977, four of eight glaciers advanced, two of them retreated and another two kept stable, the glacier advanced generally. From 1977 to 1986, four of eight glaciers retreated and the others kept stable, but the retreated glaciers were those which advanced from 1963 to 1977. From 1986 to 2000, seven of eight glaciers retreated and only one glacier kept stable, the retreating velocity was 10-15 m/a. Glacier recession in this period became very fast and universal. From 1963 to 2000, the area of glaciers decreased from 5479.0 ha to 4795.4 ha, up to 12.5%. It is alarming that most of glacier retreats happened from 1986 to 2000. This was very consistent with change process of summer mean temperature in this region and global warming beginning in the 1980s.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19070302)the National Natural Science Foundation of China(Grant Nos.41501069,41601067)provided by the Foundation of the State Key Laboratory of Cryospheric Sciences(SKLCS)at Northwest Institute of Eco-Environment and Resources(NIEER),CAS(SKLCS-OP-2017-10)
文摘High-resolution imagery can be used to reconstruct former glacier boundaries through the identification of glacial erosional and sedimentary geomorphology. We employed moraine mapping and the accumulation–area ratio method(AAR), in conjunction with Landsat, Google Earth, and SRTM imagery, to reconstruct glacier boundaries and equilibrium-line altitudes(ELAs) for Mt. Kenya in the Last Glacial Maximum(LGM), the Little Ice Age(LIA), and at present. Our results show that the areas of Lewis Glacier and the Tyndall-I glacier system were 0.678 km^2 and 0.390 km^2, respectively, during the maximum of LIA. Those mean that the both glaciers have shrunken by 87.0% and 88.7%, respectively since the LIA. Area change ratios for each glacier were significantly larger in the period of 2000 through 2015 than the former periods, indicating that glacier recession has accelerated. Continuous ice loss in this region has been driven by rising temperature and fluctuating precipitation. Linear regression data for Lewis glacier show that mass balance sensitivity to dry season temperature was –315 mm w.e./℃, whereas the sensitivity to dry season precipitation was 5.2 mm w.e./mm. Our data also show that the ELA on the western slope of Mt. Kenya rose by 716-816 m from the LGM to the modern era, corresponding to that temperature rose by 5.2℃-6.5℃.
基金supported by the Global Change Research Program of China (Grant No. 2013CBA01806)the China National Natural Science Foundation (Grants Nos. 41130641, 41130638, and 41271090)Shanxi key science and technology innovation team (2014KCT-27)
文摘Glacier runoff in mountain areas of the Shiyang River Basin(SRB), Qilian Mountain, western China is important for the river and water supply downstream. Small glaciers with area of less than 1km2 are dominant(87%) in the SRB. A modified monthly degree-day model was applied to quantify the glacier mass balance, area, and changes in glacier runoff in the SRB during 1961–2050. The comparison between the simulated and observed snow line altitude, annual glacier runoff, and mass balance from1961 to 2008 suggests that the degree-day model may be used to analyze the long-term change of glacier mass balance and runoff in the SRB. The glacier accumulation shows a significant(p<0.01) decreasing trend of-0.830 mm a-1. The mass balance also shows a significant(p<0.01) decreasing trend of-5.521 mm a-1. The glacier total runoff has significantly(p<0.05)increased by 0.079 × 105 m3 from 1961 to 2008. The monthly precipitation and air temperature are projected to significant(p<0.005) increase during2015 to 2050 under three different scenarios. The ablation is projected to significant(p<0.001) increase,while the accumulation has no significant(p=0.05)trend. The mass balance is projected to decrease, theglacier area is projected to decrease, and the glacier runoff depth is projected to increase. However, the glacier total runoff is projected to decrease. These results indicate that the glacier total runoff over glacier areas observed in 1970 reached its peak in the 2000 s. This will exacerbate the contradiction between water supply and downstream water demands in the SRB.
基金the projects of National Major Scientific Research Project (2013CBA01806)National Natural Science Foundation of China (Grant Nos. 41271085,41130641)open fund project of State Key Laboratory of Cryospheric Science (SKLCS-OP2013-05)
文摘To evaluate isotopic tracers at natural abundances by providing basic isotope data of the hydrological investigations and assessing the impacts of different factors on the water cycle, a total of 197 water samples were collected from the Laohugou Glacial catchment in the Shule River basin northwestern China during the 2013 ablation seasons and analyzed their H- and O-isotope composition. The results showed that the isotopic composition of precipitation in the Qilianshan Station in the Laohugou Glacial catchment was remarkable variability. Correspondingly, a higher slope of δ180-δD diagram, with an average of 8.74, is obtained based on the precipitation samples collected on the Glacier No.la, mainly attributed to the lower temperature on the glacier surface. Because of percolation and elution, the bottom of the firn the isotopic composition at is nearly steady. The 6180 /altitude gradients for precipitation and melt water were -o.37%o/100 m and -o.34%o/100 m, respectively Exposed to the air and influenced by strong ablation and evaporation, the isotopic values and the 6180 vs 6D diagram of the glacial surface ice show no altitudinal effect, indicating that glacier ice has the similar origins with the firn. The variation of isotopic composition in the melt water, varying from -l0.7‰ to -16.9‰ (8180) and from -61.1%o to -122.1%o (6D) indicates the recharging of snowmelt and glacial ice melt water produced at different altitudes. With a mean value of -13.3‰ for 8180 and -89.7‰ for 8D, the isotopic composition of the stream water is much closer to the melt water, indicating that stream water is mainly recharged by the ablation water. Our results of the stable isotopic compositions in natural water in the Laohugou Glacial catchment indicate the fractionations and the smoothing fluctuations of the stable isotopes during evaporation, infiltration and mixture.
文摘The borders of Illinois were established when Illinois became a state in 1818. The western border was delineated using the Mississippi River, and the Ohio River was used as the southern border. The eastern border was formed by the Ohio and Wabash Rivers plus the line along latitude 42030'30'' connecting the Wabash River to Lake Michigan. As initially proposed, the northern border of Illinois would have been 82 km (51 mi) to the south of the current longitude line of 87~31 '. This 2,160,000 ha (5,440,000 ac) addition to Illinois resulted in the territory having the required minimum of 40,000 people to qualify as a state. The northern border was moved to allow the linkage of the Great Lakes shipping route to the Illinois and Mississippi River navigation channels. Illinois thus gained a valuable shoreline on Lake Michigan and a location for a shipping port hub which became Chicago. Initially the transfer of goods between these waterways required a portage, but later a shipping canal was created to link the waterways. During the Civil War, Union forces used the connected waterway systems as a northern supply route to avoid the contested Ohio River.
基金The Key International Cooperation Project of Ministry of Science and Technology of China No.2001CB711003+3 种基金 National Natural Science Foundation of China No.40305007 The Science and Technology Innovation Project of Northwest Normal University No.NWNU-KJ
文摘During the 1992-1993 joint Australian-Chinese over-snow traverse of thewestern Lambert Glacier Basin (LGB), two firn cores were drilled respectively at MGA and LGB16.During the 1996-1997 and 1997-1998 austral summers, two firn cores were drilled respectively atDT001 and DT085 on the eastern LGB. Based on the measurements made during the expeditions, theclimatic and environmental features on both sides of the LGB have been studied. Results show thatduring the past 50 years, the trends of both air temperature and accumulation rate show a slightincrease on the east side of the LGB, in contrast to the west side of the LGB. The spatial trends ofthe accumulation rate measured by accumulation canes at 2 km intervals along the nearly 500 km ofthe traverse lines on both sides of the LGB are different. Moreover, correlations of δ^(18)O vsT_(10) along the two sides of the LGB are also different. In addition, the variations of sea saltion concentrations show different trends in the past 50 years. All the evidence shows that theLambert Glacier is a dividing region for the different climatic regimes over the East Antarctic icesheet, which may be due to different moisture resources resulting from special local circumfluencesuch as cyclone activities, local terrain influences.
基金supported by the Cryosphere Monitoring Programme (CMP) of the International Centre for Integrated Mountain Development (ICIMOD) funded by the Norwegian Ministry of Foreign Affairssupported by core funds of ICIMOD contributed by the Governments of Afghanistan, Australia, Austria, Bangladesh, Bhutan, China, India, Myanmar, Nepal, Norway, Pakistan, Switzerland, and the United Kingdomthe Koshi Basin Programme at ICIMOD, which is supported by the Australian Government through the Sustainable Development Investment Portfolio for South Asia
文摘Changes in glacial lakes and the consequences of these changes, particularly on the development of water resources and management of glacial lake outburst flood(GLOF) risk, has become one of the challenges in the sustainable development of high mountain areas in the context of global warming. This paper presents the findings of a study on the distribution of, and area changes in, glacial lakes in the Koshi basin in the central Himalayas.Data on the number of glacial lakes and their area was generated for the years 1977, 1990, 2000, and 2010 using Landsat satellite images. According to the glacial lake inventory in 2010, there were a total of 2168 glacial lakes with a total area of 127.61 km^2 and average size of 0.06 km^2 in the Koshi basin. Of these,47% were moraine dammed lakes, 34.8% bedrock dammed lakes and 17.7% ice dammed lakes. The number of glacial lakes increased consistently over the study period from 1160 in 1977 to 2168 in 2010, an overall growth rate of 86.9%. The area of glacial lakes also increased from 94.44 km^2 in 1977 to 127.61 km^2 in 2010, a growth rate of 35.1%. A large number of glacial lakes in the inventory are small in size(≤ 0.1km^2). End moraine dammed lakes with area greater than 0.1 km^2 were selected to analyze the change characteristics of glacial lakes in the basin. The results show that, in 2010, there were 129 lakes greater than 0.1 km^2 in area; these lakes had a total area of 42.92km^2 in 1997, increasing to 63.28 km^2 in 2010. The distribution of lakes on the north side of the Himalayas(in China) was three times higher than on the south side of the Himalayas(in Nepal).Comparing the mean growth rate in area for the 33 year study period(1977-2010), the growth rate on the north side was found to be a little slower than that on the south side. A total of 42 glacial lakes with an area greater than 0.2 km^2 are rapidly growing between 1977 and 2010 in the Koshi basin, which need to be paid more attention to monitoring in the future and to identify how critical they are in terms of GLOF.
基金supported by the National Natural Science Foundation of China(Grant Nos.41471006,41101004 & 41301006)Strategic Priority Research Program(B) of the Chinese Academy of Sciences(Grant No.XDB01020300)State Key Laboratory of Cryospheric Sciences(Grant No.SKLCS-OP-2016-08)
文摘Well-preserved Late Glacial moraines in the Barenduo and Yuqiongqu valleys on the eastern slope of the Samdainkangsang Peak present an opportunity to reconstruct glacier extents and examine the character of the climate during the Late Glacial stage in the Nyaiqentanggulha Mountains. This study employs a coupled mass-balance and ice-flow model to reconstruct the glacier extents in the two valleys and assess the magnitudes of temperature and precipitation change during the Late Glacial period. Model results indicate that during the Late Glacial, the Barenduo valley contained an ice volume of 1.67x 108 m3, with the equilibrium-line altitude (ELA) being -5500 m asl; and the Yuqiongqu valley had an ice volume of 5.56x 108 m3, with the ELA being -5470 m asl. A climate scenario, temperature depression of 2.6-2.8°C and 60-70%, percent of modern (1981-2010) precipitation, can sustain both of the Late Glacial glacier extents in the two valleys. A 50% increase or decrease from modern precipitation would have been coupled with the respective Late Glacial temperature depressions of 1.6 and 3.0°C in the Barenduo valley, and 2.1 and 2.8°C in the Yuqiongqu valley.