期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
影响寒区水库雪/冰表面温度的因素及其敏感性分析
1
作者 常娥 白乙拉 贾青 《渤海大学学报(自然科学版)》 CAS 2016年第3期198-202,共5页
基于雪/冰表面热平衡方程,得到影响雪/冰表面温度的主要因素有冰上气温、风速、净辐射、冰厚、湿度、云量及气压.考虑某一因素对雪/冰表面温度的影响,则改变这一因素,保持其它因素相对固定,从而分析该因素对雪/冰表面温度影响的敏感性.... 基于雪/冰表面热平衡方程,得到影响雪/冰表面温度的主要因素有冰上气温、风速、净辐射、冰厚、湿度、云量及气压.考虑某一因素对雪/冰表面温度的影响,则改变这一因素,保持其它因素相对固定,从而分析该因素对雪/冰表面温度影响的敏感性.采用2009-2010年冬季黑龙江红旗泡水库现场观测所得的不同时刻冰上气温、风速、太阳辐射、冰厚等实测数据以及在中国气象网上下载得到的安达气象站的有关云量、湿度与海平面气压等数据进行统计分析,确定主要影响因素的特征.在此基础上对某一因素在实测范围内变化取值,利用雪/冰表面热平衡方程,模拟计算出对应的水库雪/冰表面温度.经敏感性分析得到了红旗泡水库上述七个影响因素与雪/冰表面温度的关系式.该结果可为气象因素对水库淡水冰的形成及数值模拟研究提供参考依据. 展开更多
关键词 表面热平衡方程 雪/冰表面温度 影响因素 敏感性分析
下载PDF
室内人工冰场冰池及冷排管构造实验研究
2
作者 李锋 韩晓婉 司春强 《冷藏技术》 2023年第1期36-39,共4页
本文基于以CO_(2)为制冷剂的室内人工冰场,针对冰池冷排管排布构造形式及设计参数对冰面的影响进行了模拟和实验分析。通过对不同冰层厚度(3 cm、4 cm、5 cm)、不同冰表面温度(-3℃、-6℃、-9℃)工况下CO_(2)制冷剂在冷排管内的压力降... 本文基于以CO_(2)为制冷剂的室内人工冰场,针对冰池冷排管排布构造形式及设计参数对冰面的影响进行了模拟和实验分析。通过对不同冰层厚度(3 cm、4 cm、5 cm)、不同冰表面温度(-3℃、-6℃、-9℃)工况下CO_(2)制冷剂在冷排管内的压力降变化情况进行了研究分析,发现冷排管的压力值均是随着冷排管长度的增加而降低。冷排管压力差值范围为0.033~0.053 MPa,平均每米冷排管的压差范围为210~330 Pa。另外随着蒸发温度的变化,冰表面温度随之进行有规律变化。同时文中还分析了蒸发温度、冰底温度、冰面温度以及冰层间的温度变化规律。 展开更多
关键词 人工 CO_(2) 冰表面温度 压力降 蒸发温度
下载PDF
MODIS海冰数据监测中山站附近海冰的季节性变化 被引量:11
3
作者 张辛 鄂栋臣 《极地研究》 CAS CSCD 2008年第4期346-354,共9页
本文利用中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,即MODIS)的海冰数据,监测中山站附近区域海冰的季节性(尤其是夏季)的消融与冻结情况及海冰表面温度的变化。文中先对MODIS的海冰数据进行影像分层、数据合成... 本文利用中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,即MODIS)的海冰数据,监测中山站附近区域海冰的季节性(尤其是夏季)的消融与冻结情况及海冰表面温度的变化。文中先对MODIS的海冰数据进行影像分层、数据合成,分时间段计算海冰范围,然后提取海冰表面温度信息,最后对获取的数据进行分析。研究结果表明,中山站附近区域在每年10月至翌年2月中上旬为海冰消融期;2月中下旬至4月为海冰冻结非密封期;5月至9月为海冰冻结密封期。海冰范围2月份最小;海冰表面温度1月份最低,8月份最高。 展开更多
关键词 MODIS海数据 中山站 南极海 消融与冻结 冰表面温度
下载PDF
Last Glacial Maximum Sea Surface Temperatures: A Model-Data Comparison 被引量:1
4
作者 WANG Tao LIU Yi HUANG Wei 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第5期233-239,共7页
In this study,the authors investigated changes in Last Glacial Maximum (LGM) sea surface temperature (SST) simulated by the Paleoclimate Modelling Intercomparison Project (PMIP) multimodels and reconstructed by ... In this study,the authors investigated changes in Last Glacial Maximum (LGM) sea surface temperature (SST) simulated by the Paleoclimate Modelling Intercomparison Project (PMIP) multimodels and reconstructed by the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) project,focusing on model-data comparison.The results showed that the PMIP models produced greater ocean cooling in the North Pacific and Tropical Ocean than the MARGO,particularly in the northwestem Pacific,where the modeldata mismatch was larger.All the models failed to capture the anomalous east-west SST gradient in the North Atlantic.In addition,large discrepancies among the models were observed in the mid-latitude ocean,particularly with models in the second phase of the PMIP.Although these models showed better agreement with the MARGO,the latest models in the third phase of the PMIP did not show substantial progresses in simulating LGM ocean surface conditions.That is,improvements in the modeling community are still needed to describe SST for a better understanding of climate during the LGM. 展开更多
关键词 Last Glacial Maximum sea surface temperature MODEL MARGO
下载PDF
Intercomparison of Surface Radiative Fluxes in the Arctic Ocean
5
作者 SHI Xiao-Xu LIU Ji-Ping 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第6期434-439,共6页
Recent satellite data analysis has provided improved data sets relevant to the surface energy budget in the Arctic Ocean. In this paper, surface radiation properties in the Arctic Ocean obtained from the Surface Radia... Recent satellite data analysis has provided improved data sets relevant to the surface energy budget in the Arctic Ocean. In this paper, surface radiation properties in the Arctic Ocean obtained from the Surface Radiation Budget(SRB3.0) and the International Satellite Cloud Climatology Project(ISCCP-FD) during 1984– 2007 are analyzed and compared. Our analysis suggests that these datasets show encouraging agreement in basin-wide averaged seasonal cycle and spatial distribution of surface albedo; net surface shortwave and all-wave radiative fluxes; and shortwave, longwave, and all-wave cloud radiative forcings. However, a systematic large discrepancy is detected for the net surface longwave radiative flux between the two data sets at a magnitude of ~ 23 W m–2, which is primarily attributed to significant differences in surface temperature, particularly from April to June. Moreover, the largest difference in surface shortwave and all-wave cloud radiative forcings between the two data sets is apparent in early June at a magnitude of 30 W m–2. 展开更多
关键词 Arctic Ocean surface albedo surface radiative flux cloud forcing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部