A field investigation on Quaternary glacial landforms in Laoshan Motmtain has discovered many glacial potholes, scouring grooves on top of granite ridges, and large boulders. These erosional landforms were formed by t...A field investigation on Quaternary glacial landforms in Laoshan Motmtain has discovered many glacial potholes, scouring grooves on top of granite ridges, and large boulders. These erosional landforms were formed by the meltwater from the overlying ice cap, suggesting that there was at least an ice cap covering Laoshan Mountain and the surrounding areas or even a continental ice sheet over the vast area of Shandong Province in the Late Pleistocene. The ice sheet was obstructed by the Laoshan Mountain, Dazhu Mountain and Xiaozhu Mountain in the coastal areas as it moved toward the Yellow Sea. The ice flows eroded the bedrock and carved the weak intersection of the fault systems in the NE and NW directions into a deep channel, which gradually formed a fjord in the area of the Jiaozhou Bay basin by 20.00 ka BE The seawater gradually invaded the fjord from the beginning of the Holocene (11.00 ka BP) and Jiaozhou Bay was eventually formed. Similar fjords are easily found along the east of China and they share a similar origin because of the Quaternary glaciation in the region.展开更多
On top of Shigujian Peak(1477 m a.s.l.) of the Dayangshan Mountain in Jinyun County, Zhejiang Province, large amounts of granite pits with diameters ranging from several dozens of centimeters to around one meter and d...On top of Shigujian Peak(1477 m a.s.l.) of the Dayangshan Mountain in Jinyun County, Zhejiang Province, large amounts of granite pits with diameters ranging from several dozens of centimeters to around one meter and depth from 10 cm to 45 cm are found on rock surface.These pits mainly appear on the NE and SE sides, and their drainage mouths are in the same direction.The identification results through micropolariscope and X-ray fluorescence spectrometer reveal that bedrock of pits is from middle to fine-grained moyite being apt to be weathered and modified.In Dayangshan region the annual mean temperature is 9.2℃ and annual precipitation is over 1700 mm.On the one hand, there always experiences a period of periglacial action with temperature oscillating near 0℃ for 4 months, i.e., from December to March next year.As a consequence, the freezing-thawing cycles may be remarkable to disintegrate the bedrock.On the other hand, the windward slope of Shigujian Peak meets typhoon of over force 10 on the Beaufort scale in summer, therefore, the blowing makes suspending sands or pebbles grind in swirling form.Based on field investigation and periglacial geomorphic theory, the pits on top of Shigujian Peak are attributed to freez-ing-thawing of periglacial action.Meanwhile, storm and strong wind accelerate the process.Observation shows that both the actions are still undergoing and variant directions of wind are the main cause for making different shapes of the pits.Because the top of Shigujian is 1500 m lower than the present snow line, some scholars considered that"glacial pothole"formed in the Quaternary is hard to work, even though in the Last Glacial Maximum(LGM).展开更多
Like for most parts of High Asia,researches concerning the Pleistocene landscape evolution of the Leh Basin(34°03' N/77°38' E) have also left contradictions.To push this topic,three up to now unexplo...Like for most parts of High Asia,researches concerning the Pleistocene landscape evolution of the Leh Basin(34°03' N/77°38' E) have also left contradictions.To push this topic,three up to now unexplored Ladakh Range tributaries of the Leh Basin(Stagmo-,Arzu-and Nang-Valley) have been investigated.U-shaped profiles,transfluence passes,moraine mantled and glacially rounded peaks and ridges,roches moutonnées,glacial flank polishings and ground moraines document the former glaciation of the study area.The ice fillings of these tributaries reached a minimum thickness up to 540 m.Even at the valley outlets and on the orographic right side of the Leh Basin,the glaciation was more than 350 m thick.Based on these empirically extracted results,theoretical snow line considerations lead to the conclusion that the whole Leh Basin was filled up by a former Indus-Valley glacier.An ice injection limited to the nourishment areas of the Ladakh Range valleys could not have caused the reconstructed ice cover(down to 3236 m a.s.l.),which is proved by extended ground moraine complexes.Only an Indus ice stream network(most likely during the LGP),nourished by inflowing glaciers of the Ladakh-and Stok Range,explains the widespread existence of the glacial sediments at the outlets of the investigated valleys.展开更多
Kongur Mountain is the largest center of modern glaciation on the Pamir Plateau.During the glacial-interglacial cycles of the Quaternary,Kongur Mountain was extensively and repeatedly glaciated,and the glacial landfor...Kongur Mountain is the largest center of modern glaciation on the Pamir Plateau.During the glacial-interglacial cycles of the Quaternary,Kongur Mountain was extensively and repeatedly glaciated,and the glacial landforms from multiple glaciations are well-preserved in valleys,in basins,and on the piedmonts.Dating samples have been collected according to the distribution and weathering of the glacial tills,the relationship among the glacial deposits,and the loess or soil developed on the moraines. Electron spin resonance(ESR) dating of the samples was done using the germanium(Ge) centers in the glacial quartz grains,which are sensitive to both sunlight and grinding.The ages of the glacial deposits can be divided into four clusters,i.e.,13.1±0.8-27.0±2.2,36.4±3.3-48.7±5.7,65.6±6.8-86.6±8.9,and 105.6±9.4-178.3±17.8 ka.Six glacial advances in this region have been confirmed,which are equivalent in age to the Little Ice Age(LIA) ,Neoglaciation,marine oxygen isotope stages(MIS) 2,mid-MIS3,MIS4,and MIS6.The largest local last glacial maximum(LGML) occurred during MIS4 rather than the global Last Glacial Maximum(LGMG) of MIS2,and a glacial advance that occurred during mid-MIS3 was also larger than the LGMG.Furthermore,deeply weathered tills below 3500 m a.s.l.on the western slope of Kongur Mountain,when compared with the ages of the oldest glaciation of the Muztag Ata region,likely occurred prior to the penultimate glacial cycle.The glacial landforms prior to the penultimate glacial cycle on the northern slope are not well-preserved due to erosion after deposition. Several glacial deposits are only speculated to be distributed at higher elevations on the southwest side of the Gaizi Checkpoint. The extensive hummocky moraines on the western slope were formed by multiple glacial advances,and the latest glacial advance corresponded to mid-MIS3.展开更多
Based on stake measurements conducted along the Chinese Antarctic traverse since Jan.1999,we investigated the characteristics of surface mass balance(SMB)and related climate consequences from Zhongshan Station to Dome...Based on stake measurements conducted along the Chinese Antarctic traverse since Jan.1999,we investigated the characteristics of surface mass balance(SMB)and related climate consequences from Zhongshan Station to Dome A,East Antarctica.Spatial analysis suggests that post-depositional processes have a great impact on surface morphology;thus,the representativeness of a single measurement should be discussed in conjunction with local climate features.The comparison among snow accumulation,ice sheet thickness,surface elevation,and ice velocity indicates that the bedrock topography has an indirect connection with the SMB patterns through controlling the surface topography and local climate.The observation reveals that the Lambert Glacier Basin has been experiencing increasing mass input(4.5%),whereas the inland area has experienced a 6%loss,since 2005.An overall estimation of the SMB along the route is 71.3±44.3 kg m?2 a?1,but the annual and regional variation is considerable.Tendency analysis shows that there are four sections with different SMB patterns as a result of three moisture sources and surface climatic discrepancy in the Antarctic inland.This study is the first to identify four SMB patterns from the coast to the Dome area and should provide a valuable contribution to modeling and remote sensing on a continental scale.展开更多
The glacial trough is a common glacier erosion landscape, which plays an important role in the study of glacier erosion processes. In a sharp contrast with the developing river, which is generally meandering, the deve...The glacial trough is a common glacier erosion landscape, which plays an important role in the study of glacier erosion processes. In a sharp contrast with the developing river, which is generally meandering, the developing glacial trough is usually wide and straight. Is the straightness of the glacial trough just the special phenomenon of some areas or a universal feature? What controls the straightness of the glacial trough? Until now, these issues have not been studied yet. In this paper, we conduct systematic numerical models of the glacier erosion and simulate the erosion evolution process of the glacial trough. Numerical simulations show that:(1) while the meandering glacier is eroding deeper to form the U-shaped cross section, the glacier is eroding laterally. The erosion rate of the ice-facing slope is bigger than that of the back-slope.(2) The smaller(bigger) the slope is, the smaller(bigger) the glacier erosion intensity is.(3) The smaller(bigger) the ice discharge is, the smaller(bigger) the glacier erosion intensity is. In the glacier erosion process, the erosion rate of the ice-facing slope is always greater than that of the back-slope. Therefore, the glacial trough always develops into more straight form. This paper comes to the conclusion that the shape evolution of the glacial trough is controlled mainly by the erosion mechanism of the glacier. Thereby, the glacial trough prefers straight geometry.展开更多
基金Doctorate Research Program of China University of Petroleum (No. Y020109)
文摘A field investigation on Quaternary glacial landforms in Laoshan Motmtain has discovered many glacial potholes, scouring grooves on top of granite ridges, and large boulders. These erosional landforms were formed by the meltwater from the overlying ice cap, suggesting that there was at least an ice cap covering Laoshan Mountain and the surrounding areas or even a continental ice sheet over the vast area of Shandong Province in the Late Pleistocene. The ice sheet was obstructed by the Laoshan Mountain, Dazhu Mountain and Xiaozhu Mountain in the coastal areas as it moved toward the Yellow Sea. The ice flows eroded the bedrock and carved the weak intersection of the fault systems in the NE and NW directions into a deep channel, which gradually formed a fjord in the area of the Jiaozhou Bay basin by 20.00 ka BE The seawater gradually invaded the fjord from the beginning of the Holocene (11.00 ka BP) and Jiaozhou Bay was eventually formed. Similar fjords are easily found along the east of China and they share a similar origin because of the Quaternary glaciation in the region.
基金Regional landform and landscape survey programme of the Zhejiang Institute of Geological Survey
文摘On top of Shigujian Peak(1477 m a.s.l.) of the Dayangshan Mountain in Jinyun County, Zhejiang Province, large amounts of granite pits with diameters ranging from several dozens of centimeters to around one meter and depth from 10 cm to 45 cm are found on rock surface.These pits mainly appear on the NE and SE sides, and their drainage mouths are in the same direction.The identification results through micropolariscope and X-ray fluorescence spectrometer reveal that bedrock of pits is from middle to fine-grained moyite being apt to be weathered and modified.In Dayangshan region the annual mean temperature is 9.2℃ and annual precipitation is over 1700 mm.On the one hand, there always experiences a period of periglacial action with temperature oscillating near 0℃ for 4 months, i.e., from December to March next year.As a consequence, the freezing-thawing cycles may be remarkable to disintegrate the bedrock.On the other hand, the windward slope of Shigujian Peak meets typhoon of over force 10 on the Beaufort scale in summer, therefore, the blowing makes suspending sands or pebbles grind in swirling form.Based on field investigation and periglacial geomorphic theory, the pits on top of Shigujian Peak are attributed to freez-ing-thawing of periglacial action.Meanwhile, storm and strong wind accelerate the process.Observation shows that both the actions are still undergoing and variant directions of wind are the main cause for making different shapes of the pits.Because the top of Shigujian is 1500 m lower than the present snow line, some scholars considered that"glacial pothole"formed in the Quaternary is hard to work, even though in the Last Glacial Maximum(LGM).
文摘Like for most parts of High Asia,researches concerning the Pleistocene landscape evolution of the Leh Basin(34°03' N/77°38' E) have also left contradictions.To push this topic,three up to now unexplored Ladakh Range tributaries of the Leh Basin(Stagmo-,Arzu-and Nang-Valley) have been investigated.U-shaped profiles,transfluence passes,moraine mantled and glacially rounded peaks and ridges,roches moutonnées,glacial flank polishings and ground moraines document the former glaciation of the study area.The ice fillings of these tributaries reached a minimum thickness up to 540 m.Even at the valley outlets and on the orographic right side of the Leh Basin,the glaciation was more than 350 m thick.Based on these empirically extracted results,theoretical snow line considerations lead to the conclusion that the whole Leh Basin was filled up by a former Indus-Valley glacier.An ice injection limited to the nourishment areas of the Ladakh Range valleys could not have caused the reconstructed ice cover(down to 3236 m a.s.l.),which is proved by extended ground moraine complexes.Only an Indus ice stream network(most likely during the LGP),nourished by inflowing glaciers of the Ladakh-and Stok Range,explains the widespread existence of the glacial sediments at the outlets of the investigated valleys.
基金supported by National Natural Science Foundation of China(Grant No.40771049)Knowledge Innovation Project of Chinese Academy of Sciences(Grant No.KZCX2-YW-GJ04)the Program of Ministry of Science and Technology of China(Grant No. 2006FY110200)
文摘Kongur Mountain is the largest center of modern glaciation on the Pamir Plateau.During the glacial-interglacial cycles of the Quaternary,Kongur Mountain was extensively and repeatedly glaciated,and the glacial landforms from multiple glaciations are well-preserved in valleys,in basins,and on the piedmonts.Dating samples have been collected according to the distribution and weathering of the glacial tills,the relationship among the glacial deposits,and the loess or soil developed on the moraines. Electron spin resonance(ESR) dating of the samples was done using the germanium(Ge) centers in the glacial quartz grains,which are sensitive to both sunlight and grinding.The ages of the glacial deposits can be divided into four clusters,i.e.,13.1±0.8-27.0±2.2,36.4±3.3-48.7±5.7,65.6±6.8-86.6±8.9,and 105.6±9.4-178.3±17.8 ka.Six glacial advances in this region have been confirmed,which are equivalent in age to the Little Ice Age(LIA) ,Neoglaciation,marine oxygen isotope stages(MIS) 2,mid-MIS3,MIS4,and MIS6.The largest local last glacial maximum(LGML) occurred during MIS4 rather than the global Last Glacial Maximum(LGMG) of MIS2,and a glacial advance that occurred during mid-MIS3 was also larger than the LGMG.Furthermore,deeply weathered tills below 3500 m a.s.l.on the western slope of Kongur Mountain,when compared with the ages of the oldest glaciation of the Muztag Ata region,likely occurred prior to the penultimate glacial cycle.The glacial landforms prior to the penultimate glacial cycle on the northern slope are not well-preserved due to erosion after deposition. Several glacial deposits are only speculated to be distributed at higher elevations on the southwest side of the Gaizi Checkpoint. The extensive hummocky moraines on the western slope were formed by multiple glacial advances,and the latest glacial advance corresponded to mid-MIS3.
基金supported by National Basic Research Program of China(Grant No.2013CBA01804)the National Natural Science Foundation of China(Grant Nos.41206179,41425003)+2 种基金the State Oceanic Administration of the People’s Republic of China Project on Climate in Polar Regions(Grant Nos.CHINARE2012-02-02,CHINARE2012-04-04)the State Key Laboratory of Cryospheric Sciences Opening Fund(Grant No.SKLCS 2012-01)the logistical and financial support provided by Chinese National Antarctic Research Expedition(Grant No.IC201311)
文摘Based on stake measurements conducted along the Chinese Antarctic traverse since Jan.1999,we investigated the characteristics of surface mass balance(SMB)and related climate consequences from Zhongshan Station to Dome A,East Antarctica.Spatial analysis suggests that post-depositional processes have a great impact on surface morphology;thus,the representativeness of a single measurement should be discussed in conjunction with local climate features.The comparison among snow accumulation,ice sheet thickness,surface elevation,and ice velocity indicates that the bedrock topography has an indirect connection with the SMB patterns through controlling the surface topography and local climate.The observation reveals that the Lambert Glacier Basin has been experiencing increasing mass input(4.5%),whereas the inland area has experienced a 6%loss,since 2005.An overall estimation of the SMB along the route is 71.3±44.3 kg m?2 a?1,but the annual and regional variation is considerable.Tendency analysis shows that there are four sections with different SMB patterns as a result of three moisture sources and surface climatic discrepancy in the Antarctic inland.This study is the first to identify four SMB patterns from the coast to the Dome area and should provide a valuable contribution to modeling and remote sensing on a continental scale.
基金supported by the National Natural Science Foundation of China(Grant No.41174067)
文摘The glacial trough is a common glacier erosion landscape, which plays an important role in the study of glacier erosion processes. In a sharp contrast with the developing river, which is generally meandering, the developing glacial trough is usually wide and straight. Is the straightness of the glacial trough just the special phenomenon of some areas or a universal feature? What controls the straightness of the glacial trough? Until now, these issues have not been studied yet. In this paper, we conduct systematic numerical models of the glacier erosion and simulate the erosion evolution process of the glacial trough. Numerical simulations show that:(1) while the meandering glacier is eroding deeper to form the U-shaped cross section, the glacier is eroding laterally. The erosion rate of the ice-facing slope is bigger than that of the back-slope.(2) The smaller(bigger) the slope is, the smaller(bigger) the glacier erosion intensity is.(3) The smaller(bigger) the ice discharge is, the smaller(bigger) the glacier erosion intensity is. In the glacier erosion process, the erosion rate of the ice-facing slope is always greater than that of the back-slope. Therefore, the glacial trough always develops into more straight form. This paper comes to the conclusion that the shape evolution of the glacial trough is controlled mainly by the erosion mechanism of the glacier. Thereby, the glacial trough prefers straight geometry.