The virtual prototype technology is applied to the design of the hydraulic impingement shovel, which is to increase the reliability of the design. The work principle of hydraulic impingement shovel is expatiated, and ...The virtual prototype technology is applied to the design of the hydraulic impingement shovel, which is to increase the reliability of the design. The work principle of hydraulic impingement shovel is expatiated, and its dynamic equations are established. The 3D model of virtual prototype is built by PRO/E. Then the couple between the mechanical body of prototype and the hydraulic system is completed by virtue of ADAMS. Finally, the simulation is made on the virtual prototype. The simulation results show that the design of underwater hydraulic impingement shovel is rational. The virtual prototype technology could lay sound foundation of successful manufacturing of physical prototype for the first time and offer highly effective and feasible means for the design and production of underwater equipments.展开更多
A possibility of the efficient use of rotary percussive drilling to provide drilling smaller diameter holes(40–70 mm) both in mining and prospecting is disclosed herein. A new construction designed for the nipple thr...A possibility of the efficient use of rotary percussive drilling to provide drilling smaller diameter holes(40–70 mm) both in mining and prospecting is disclosed herein. A new construction designed for the nipple thread connection is described. The relative amplitude variation, change of power pulse time and energy in their propagation throughout the drilling tool are determined. A possibility of the efficient power pulse transfer along the drill string to the rock destruction tools with new nipple connections which allow automating the make-up and breakout system of drill pipe was supported by experiments.展开更多
Rock drillability reflects the drill bit fragments rock hardly or easily. At present, rock drillability classification indexes have rock single axle compressive strength, point load intensity, fracture stress during c...Rock drillability reflects the drill bit fragments rock hardly or easily. At present, rock drillability classification indexes have rock single axle compressive strength, point load intensity, fracture stress during chiseling, drill speed, chiseling specific work, acoustic parameter, cutting magnitude and so on. Every index reflects rock drillability but isnt overall. It is feasible that using many indexes of fuzzy mathematics method etc. to evaluate rock drillability.展开更多
This paper reviews the development course of the front crossbeam assembly for a self-owned brand vehicle model based on lightweight and passive safety performance. Combining with an A00 model variant, the paper detail...This paper reviews the development course of the front crossbeam assembly for a self-owned brand vehicle model based on lightweight and passive safety performance. Combining with an A00 model variant, the paper details the design of extruded aluminum-alloy front crossbeam assembly from the perspectives of optimal design, performance verifi- cation, lightweight effect and cost control. The following results in the technical and engineering applications have been achieved. The weight of the developed aluminum-alloy crossbeam can be reduced by 51%. The simulated analysis of the collision rigid wall, the 40 % offset hammering as well as the static crush test of energy-absorbing box show that af- ter reasonable materials matching and size optimization of the crossbeam and the energy-absorbing boxes, the level of crash safety can be improved. The price of aluminum-alloy front crossbeam can be lowered by using the extruding die in- stead of the stamping die to reduce the die cost-sharing.展开更多
A test rig for constant velocity water entry experiments was developed that drives a flatted-bottom section attached on six degree of freedom(6-DOF) platform to enter the water vertically at near constant velocity.The...A test rig for constant velocity water entry experiments was developed that drives a flatted-bottom section attached on six degree of freedom(6-DOF) platform to enter the water vertically at near constant velocity.The experiment system,which consists of drive and actuation system,water pool,model test sections,load cell,and control system,was presented.Water entry forces of different velocities were measured during impact process,and for each test case,three runs were performed with the same motion program to check the repeatability of the force readings.The experiment results are compared with two-dimensional(2D) CFD simulation methods for flatted-bottom rigid bodies with constant entry velocity.Experimental results indicate that the impact forces mainly depend on water entry velocities.It is concluded that the feasibility and accuracy of simulation methods has been validated.展开更多
The influence of duplex surface treatments consisting of a DC-pulsed plasma nitriding process and subsequent coatings of CrN and TiAlN deposited by physical vapor deposition(PVD)on AISI H13 tool steel was studied in t...The influence of duplex surface treatments consisting of a DC-pulsed plasma nitriding process and subsequent coatings of CrN and TiAlN deposited by physical vapor deposition(PVD)on AISI H13 tool steel was studied in this article.The treated samples were characterized using metallographic techniques,SEM,EDS,and microhardness methods.Hydro-abrasive erosion wear tests were performed in a specifically designed wear tester in which the samples were rotated in a wear tank containing a mixture of distilled water and ceramic abrasive chips with a fixed rotational speed.The wear rates caused by the abrasive particle impacts were assessed based on accumulated weight loss measurements.The worn surfaces were also characterized using optical microscopy,SEM,and EDS.Microhardness measurements indicated a significant increase in the surface hardness of the duplex-treated samples.The surfaces of the samples with the TiAlN coating were approximately 15 times harder than that of the untreated samples and 3 times that of the plasma nitrided samples.Hydro-abrasive erosion wear results showed that the duplex surface treatments,especially the CrN coating,displayed the highest erosion wear resistance.展开更多
基金Supported by 863 Program Item of Hi-tech Research Development Program of China Foundation under Grant No.2002AA602012-1.
文摘The virtual prototype technology is applied to the design of the hydraulic impingement shovel, which is to increase the reliability of the design. The work principle of hydraulic impingement shovel is expatiated, and its dynamic equations are established. The 3D model of virtual prototype is built by PRO/E. Then the couple between the mechanical body of prototype and the hydraulic system is completed by virtue of ADAMS. Finally, the simulation is made on the virtual prototype. The simulation results show that the design of underwater hydraulic impingement shovel is rational. The virtual prototype technology could lay sound foundation of successful manufacturing of physical prototype for the first time and offer highly effective and feasible means for the design and production of underwater equipments.
基金supported by the research Grant within the framework of the Federal Target Program ‘Scientific and Academic Staff of Innovative Russia’ during the years of 2009–2013competitive activity 1.3.1. ‘Research conducted by young researchers, Ph.D. holders’, the project theme ‘Research of power pulse interaction in a drilling tool and in rock mass in underground borehole drilling’
文摘A possibility of the efficient use of rotary percussive drilling to provide drilling smaller diameter holes(40–70 mm) both in mining and prospecting is disclosed herein. A new construction designed for the nipple thread connection is described. The relative amplitude variation, change of power pulse time and energy in their propagation throughout the drilling tool are determined. A possibility of the efficient power pulse transfer along the drill string to the rock destruction tools with new nipple connections which allow automating the make-up and breakout system of drill pipe was supported by experiments.
文摘Rock drillability reflects the drill bit fragments rock hardly or easily. At present, rock drillability classification indexes have rock single axle compressive strength, point load intensity, fracture stress during chiseling, drill speed, chiseling specific work, acoustic parameter, cutting magnitude and so on. Every index reflects rock drillability but isnt overall. It is feasible that using many indexes of fuzzy mathematics method etc. to evaluate rock drillability.
基金Supporting Program of the"12th Five-year Plan"for Sci & Teeh Research of China(No. 2011BAG03B02No.2011BAG03B06)
文摘This paper reviews the development course of the front crossbeam assembly for a self-owned brand vehicle model based on lightweight and passive safety performance. Combining with an A00 model variant, the paper details the design of extruded aluminum-alloy front crossbeam assembly from the perspectives of optimal design, performance verifi- cation, lightweight effect and cost control. The following results in the technical and engineering applications have been achieved. The weight of the developed aluminum-alloy crossbeam can be reduced by 51%. The simulated analysis of the collision rigid wall, the 40 % offset hammering as well as the static crush test of energy-absorbing box show that af- ter reasonable materials matching and size optimization of the crossbeam and the energy-absorbing boxes, the level of crash safety can be improved. The price of aluminum-alloy front crossbeam can be lowered by using the extruding die in- stead of the stamping die to reduce the die cost-sharing.
基金Project(51074179)supported by National Natural Science Foundation of ChinaProject(2012QNZT01601005125)supported by Free Exploration Plan of Central South University,China
文摘A test rig for constant velocity water entry experiments was developed that drives a flatted-bottom section attached on six degree of freedom(6-DOF) platform to enter the water vertically at near constant velocity.The experiment system,which consists of drive and actuation system,water pool,model test sections,load cell,and control system,was presented.Water entry forces of different velocities were measured during impact process,and for each test case,three runs were performed with the same motion program to check the repeatability of the force readings.The experiment results are compared with two-dimensional(2D) CFD simulation methods for flatted-bottom rigid bodies with constant entry velocity.Experimental results indicate that the impact forces mainly depend on water entry velocities.It is concluded that the feasibility and accuracy of simulation methods has been validated.
文摘The influence of duplex surface treatments consisting of a DC-pulsed plasma nitriding process and subsequent coatings of CrN and TiAlN deposited by physical vapor deposition(PVD)on AISI H13 tool steel was studied in this article.The treated samples were characterized using metallographic techniques,SEM,EDS,and microhardness methods.Hydro-abrasive erosion wear tests were performed in a specifically designed wear tester in which the samples were rotated in a wear tank containing a mixture of distilled water and ceramic abrasive chips with a fixed rotational speed.The wear rates caused by the abrasive particle impacts were assessed based on accumulated weight loss measurements.The worn surfaces were also characterized using optical microscopy,SEM,and EDS.Microhardness measurements indicated a significant increase in the surface hardness of the duplex-treated samples.The surfaces of the samples with the TiAlN coating were approximately 15 times harder than that of the untreated samples and 3 times that of the plasma nitrided samples.Hydro-abrasive erosion wear results showed that the duplex surface treatments,especially the CrN coating,displayed the highest erosion wear resistance.