通过LS-DYNA有限元模拟软件对抗爆间室在超过100 kg TNT当量爆炸下的冲击波传播规律和结构损伤进行了研究。分析了水平和竖直截面的空气压力分布及超压峰值变化,探讨了冲击波的传播规律,并研究了不同参数对抗爆间室破坏模式的影响。提...通过LS-DYNA有限元模拟软件对抗爆间室在超过100 kg TNT当量爆炸下的冲击波传播规律和结构损伤进行了研究。分析了水平和竖直截面的空气压力分布及超压峰值变化,探讨了冲击波的传播规律,并研究了不同参数对抗爆间室破坏模式的影响。提出基于支座转角的三个损伤指标:λ(顶盖弯曲弦长与顶盖长度之比)、η(墙板脱落面积与表面积之比)、μ(顶盖弯曲曲率半径与半跨之比)评估损伤程度。结果表明:后墙区域峰值超压远大于泄爆面区域;增加墙板厚度和混凝土强度可将破坏模式由剪切破坏转为弯曲破坏,配筋率和钢筋屈服强度对破坏模式影响不大,但可增强抗剪和抗弯能力。设计建议包括墙板厚度不小于300 mm,混凝土强度为C30~C40,钢筋屈服强度为235~400 MPa。根据损伤结果,抗爆间室内的试验台位置应满足“位于抗爆间室泄爆面与中间面之间的区域”这一构造要求。展开更多
文摘通过LS-DYNA有限元模拟软件对抗爆间室在超过100 kg TNT当量爆炸下的冲击波传播规律和结构损伤进行了研究。分析了水平和竖直截面的空气压力分布及超压峰值变化,探讨了冲击波的传播规律,并研究了不同参数对抗爆间室破坏模式的影响。提出基于支座转角的三个损伤指标:λ(顶盖弯曲弦长与顶盖长度之比)、η(墙板脱落面积与表面积之比)、μ(顶盖弯曲曲率半径与半跨之比)评估损伤程度。结果表明:后墙区域峰值超压远大于泄爆面区域;增加墙板厚度和混凝土强度可将破坏模式由剪切破坏转为弯曲破坏,配筋率和钢筋屈服强度对破坏模式影响不大,但可增强抗剪和抗弯能力。设计建议包括墙板厚度不小于300 mm,混凝土强度为C30~C40,钢筋屈服强度为235~400 MPa。根据损伤结果,抗爆间室内的试验台位置应满足“位于抗爆间室泄爆面与中间面之间的区域”这一构造要求。