为了评价电脑主机缓冲结构的缓冲效果,利用高速摄像测量方法,对电脑主机运输包装件冲击实验进行了冲击响应分析,研究了电脑主机包装件中EPE缓冲垫对电脑主机的防护作用。实验中分别取5,10,15 cm 3个跌落高度,利用跌落冲击瞬间缓冲垫、...为了评价电脑主机缓冲结构的缓冲效果,利用高速摄像测量方法,对电脑主机运输包装件冲击实验进行了冲击响应分析,研究了电脑主机包装件中EPE缓冲垫对电脑主机的防护作用。实验中分别取5,10,15 cm 3个跌落高度,利用跌落冲击瞬间缓冲垫、主机、水平滑台三者冲击作用的瞬态图像,通过采集图像进行处理和分析,得到了电脑主机的位移-时间、加速度-时间曲线以及水平滑台的加速度峰值和衬垫冲击传递率。结果表明,随着冲击高度的增加,电脑主机加速度响应随之增大,缓冲垫的冲击传递率达到50%左右,显示出EPE缓冲结构具有显著的缓冲效果。展开更多
No failure, moderate failure, severe failure, and slight failure are the four failure modes generalized observed in the dynamic response of the single-layer reticulated dome under vertical impact load on apex. TE (the...No failure, moderate failure, severe failure, and slight failure are the four failure modes generalized observed in the dynamic response of the single-layer reticulated dome under vertical impact load on apex. TE (the time that the end of impact force) and TF (the time that members are broken) are two key times in the failure process. Characteristics of dynamic responses at the two key times are shown in order to make the failure mechanism clear. Then three steps of energy transfer are summarized, i.e. energy applying, energy loss and energy transfer, energy consump-tion. Based on the three steps, energy transfer process for the failure reticulated dome under once impact is introduced. Energy transmissibility and local loss ratio are put forward firstly to obtain EL F(the energy left in the main reticulated dome) from the initial kinetic energy of impactor. More-over, the distribution of failure modes is decided by EL F which leads to the maximum dynamic re-sponse of the reticulated dome, but not by the initial impact kinetic energy of impactor.展开更多
文摘为了评价电脑主机缓冲结构的缓冲效果,利用高速摄像测量方法,对电脑主机运输包装件冲击实验进行了冲击响应分析,研究了电脑主机包装件中EPE缓冲垫对电脑主机的防护作用。实验中分别取5,10,15 cm 3个跌落高度,利用跌落冲击瞬间缓冲垫、主机、水平滑台三者冲击作用的瞬态图像,通过采集图像进行处理和分析,得到了电脑主机的位移-时间、加速度-时间曲线以及水平滑台的加速度峰值和衬垫冲击传递率。结果表明,随着冲击高度的增加,电脑主机加速度响应随之增大,缓冲垫的冲击传递率达到50%左右,显示出EPE缓冲结构具有显著的缓冲效果。
基金Supported by National Natural Science Foundation of China(No.90715034)
文摘No failure, moderate failure, severe failure, and slight failure are the four failure modes generalized observed in the dynamic response of the single-layer reticulated dome under vertical impact load on apex. TE (the time that the end of impact force) and TF (the time that members are broken) are two key times in the failure process. Characteristics of dynamic responses at the two key times are shown in order to make the failure mechanism clear. Then three steps of energy transfer are summarized, i.e. energy applying, energy loss and energy transfer, energy consump-tion. Based on the three steps, energy transfer process for the failure reticulated dome under once impact is introduced. Energy transmissibility and local loss ratio are put forward firstly to obtain EL F(the energy left in the main reticulated dome) from the initial kinetic energy of impactor. More-over, the distribution of failure modes is decided by EL F which leads to the maximum dynamic re-sponse of the reticulated dome, but not by the initial impact kinetic energy of impactor.