Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity ...Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity because of the destructive power of debris flow process. In this paper, we address this problem by using the relationship between velocity and kinetic pressure, as described by surface velocity and surface kinetic pressure data. Kinetic pressure is the difference of impact pressure and static pressure. The former is detected by force sensors installed in the flow direction at the sampling section. Observations show that static pressure can be computed using the formula for static water pressure by simply substituting water density for debris flow density. We describe the relationship between surface velocity and surface kinetic pressure using data from seven laboratory flume experiments. It is consistent with the relationship for single phase flow, which is the measurement principle of the Pitot tube.展开更多
The impact force response of a peach impacting on a metal flat-surface was considered as nondestructive determination of firmness. The objectives were to analyze the effect of firmness, drop height, fruit mass, and im...The impact force response of a peach impacting on a metal flat-surface was considered as nondestructive determination of firmness. The objectives were to analyze the effect of firmness, drop height, fruit mass, and impact orientation on the impact force parameters, and to establish a relationship between the impact force parameter and firmness. The effect of fruit firmness, drop height and fruit mass on the impact force parameters (coefficient of restitution, percentage of energy absorbed, and coefficient of force-time) was evaluated. The study found that the coefficient of restitution, percentage of energy absorbed, and force-time impact coefficient were significantly affected by fruit ripeness, but not affected by drop height, impact position (fruit cheek), and mass. The percentage of absorbed energy increased with ripeness, while the force-time impact coefficient and coefficient of restitution decreased with ripeness. Relationships were obtained between the three impact characteristic parameters (force-time impact coefficient, coefficient of restitution, and percentage of energy absorbed) and peach firmness using a polynomial model (R2=0.932), S model (R2=0.910), and exponential model (R2=0.941), respectively.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 40771026)the NSFC-RFBR project (Grant No. 40911120089, 08-05-92206 NSFCa)
文摘Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity because of the destructive power of debris flow process. In this paper, we address this problem by using the relationship between velocity and kinetic pressure, as described by surface velocity and surface kinetic pressure data. Kinetic pressure is the difference of impact pressure and static pressure. The former is detected by force sensors installed in the flow direction at the sampling section. Observations show that static pressure can be computed using the formula for static water pressure by simply substituting water density for debris flow density. We describe the relationship between surface velocity and surface kinetic pressure using data from seven laboratory flume experiments. It is consistent with the relationship for single phase flow, which is the measurement principle of the Pitot tube.
基金Project supported by the National Natural Science Foundation of China (No. 30570449)the Program for New Century Excellent Talents in Chinese University (No. NCET-04-0544)
文摘The impact force response of a peach impacting on a metal flat-surface was considered as nondestructive determination of firmness. The objectives were to analyze the effect of firmness, drop height, fruit mass, and impact orientation on the impact force parameters, and to establish a relationship between the impact force parameter and firmness. The effect of fruit firmness, drop height and fruit mass on the impact force parameters (coefficient of restitution, percentage of energy absorbed, and coefficient of force-time) was evaluated. The study found that the coefficient of restitution, percentage of energy absorbed, and force-time impact coefficient were significantly affected by fruit ripeness, but not affected by drop height, impact position (fruit cheek), and mass. The percentage of absorbed energy increased with ripeness, while the force-time impact coefficient and coefficient of restitution decreased with ripeness. Relationships were obtained between the three impact characteristic parameters (force-time impact coefficient, coefficient of restitution, and percentage of energy absorbed) and peach firmness using a polynomial model (R2=0.932), S model (R2=0.910), and exponential model (R2=0.941), respectively.