To better design and analyze concrete structures, the mechanical properties of concrete subjected to impact loadings are investigated. Concrete is considered to be a two-phase composite made up of micro-cracks and sol...To better design and analyze concrete structures, the mechanical properties of concrete subjected to impact loadings are investigated. Concrete is considered to be a two-phase composite made up of micro-cracks and solid parts which consist of coarse aggregate particles and a cement mortar matrix. The cement mortar matrix is assumed to be elastic, homogeneous and isotropic. Based on the Moil-Tanaka concept of average stress and the Eshelby equivalent inclusion theory, a dynamic constitutive model is developed to simulate the impact responses of concrete. The impact compression experiments of concrete and cement mortar are also carried out. Experimental results show that concrete and cement mortar are rate-dependent. Under the same impact velocity, the load-carrying capacity of concrete is higher than that of cement mortar. Whereas, the maximum strain of concrete is lower than that of cement mortar. Regardless of whether it is concrete or cement mortar, with the increase in the impact velocity, the fragment size of specimens after experiment decreases.展开更多
In order to investigate the damage and deformation mechanism of large scale steel fixed-roof oil-storage tanks under the combustible gas explosion, a series of explosion experiments of scaled models are conducted. Th...In order to investigate the damage and deformation mechanism of large scale steel fixed-roof oil-storage tanks under the combustible gas explosion, a series of explosion experiments of scaled models are conducted. The l: 25 scaled numerical models of oil-storage tanks with a capacity of 5 000 m3 are also set up by ANSYS/LS-DYNA software, and their damage processes under the blast impact are numerically simulated. Both the experimental results and the numerical simulations show that the blast loading curve displays a pressure jump instantaneously at the moment of contact with the experimental models, and the overpressure peaks at the stagnation area of the outer surface on the blast side. The yield range first appears at the stagnation area and then propagates to the neighboring parts, and the irregular plastic hinge circle obviously appears around the deformation area, which results in the concaved buckling of the tank inner surface. During the whole process, the inner liquid not only impacts on the structures, but also absorbs and consumes part of the blast energy.展开更多
For a building structure subjected to impulsive loading, particularly shock and impact loading , the response of the critical columns is crucial to the behaviour of the entire system during and after the blast loading...For a building structure subjected to impulsive loading, particularly shock and impact loading , the response of the critical columns is crucial to the behaviour of the entire system during and after the blast loading phase. Therefore, an appropriate evaluation of the column response and damage under short-duration impulsive loading is important in a comprehensive assessment of the performance of a building system. This paper reports a dynamic analysis approach for the response of RC columns subjected to impulsive loading. Considering that the dynamic response of a column in a frame structure can also be affected by the floor movement which relates to the global vibration of the frame system, a generic column-mass model is used, in which a concentrated mass is attached to the column top to simulate the effect of a global vibration. To take into account the high shear effect under impulsive load, the model is formulated using Timoshenko beam theory, and three main nonlinear mechanisms are considered. Two typical scenarios, one under a direct air blast loading, and another under a blast-induced ground excitation, are analyzed and the primary response features are highlighted.展开更多
The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with c...The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis.展开更多
Having an accurate understanding of concrete behavior under effects of high strain rate loading with the aim of reducing incurred damages is of great importance. Due to complexities and high costs of experimental rese...Having an accurate understanding of concrete behavior under effects of high strain rate loading with the aim of reducing incurred damages is of great importance. Due to complexities and high costs of experimental research, numerical studies can be an appropriate alternative for experimental methods. Therefore, in this research capability of the finite element method for predicting concrete behavior at various loading conditions is evaluated by LS-DYNA software. First, the proposed method is presented and then is validated in three stages under different conditions. Results of load-lnidspan displacement showed good agreement between experimental and finite element results. Capability of finite element method in analyses of beams under various rates of loading was also validated by low error of the results. In addition, the proposed method has reasonable ability to evaluate reinforced concrete beams under various loading rates and different conditions.展开更多
To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)...To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.展开更多
Strain growth is a phenomenon observed in containment vessels subjected to internal blast loading. The elastic response of the vessel may become larger in a later stage compared to its response during the initial stag...Strain growth is a phenomenon observed in containment vessels subjected to internal blast loading. The elastic response of the vessel may become larger in a later stage compared to its response during the initial stage. The dynamic responses of infinitely long cylindrical containment vessels subjected to uniformly-distributed internal blast loading are studied using LS-DYNA. The development of bending modes and the interaction between the breathing mode and bending modes are observed. The methodology developed for dynamic elastic buckling analysis is employed to study the strain growth phenomenon in explosion containment vessels. It is shown that the dynamic instable vibration of a containment vessel is the basic mechanism of strain growth.展开更多
Hydroelasticity caused by water impact is of concem in many applications of ocean engineering/naval architect and is a complicated physical phenomenon. The authors have developed a coupled Eulerian scheme with Lagrang...Hydroelasticity caused by water impact is of concem in many applications of ocean engineering/naval architect and is a complicated physical phenomenon. The authors have developed a coupled Eulerian scheme with Lagrangian particles to combine advantages and to compensate disadvantages in both grid based method and particle based method. In this study, the developed numerical model was applied to hydroelastic problems due to impact pressure such as water entry of an elastic cylinder and elastic tanker motion in wave. The authors showed the numerical results which is overall agreement with experimental results. The proposed numerical scheme can be useful and effectiveness to evaluate hydroelasticity and ship-wave interaction in nonlinear wave motion with breaking.展开更多
In order to qualify shock resistance performance of shipboard equipments and simulate real underwater explosion environment,a novel dual-pulse shock test machine is proposed.The new machine will increase testing capab...In order to qualify shock resistance performance of shipboard equipments and simulate real underwater explosion environment,a novel dual-pulse shock test machine is proposed.The new machine will increase testing capability and meet special shock testing requirement.Two key parts of the machine,the velocity generator and the shock pulse regulator,play an important role in producing the positive acceleration pulse and the succeeding negative acceleration pulse,respectively.The generated dual-pulse shock for test articles is in conformity with an anti-shock test specification.Based on the impact theory,a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism that involves conversion of gas potential energy and dissipation of kinetic energy.Simulation results have demonstrated that the proposed machine is able to produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain,which sets up a base for the construction of the machine.展开更多
基金The National Natural Science Foundation of China(No. 11162015)the Natural Science Foundation of Ningxia Hui Autonomous Region (No. NZ1106)
文摘To better design and analyze concrete structures, the mechanical properties of concrete subjected to impact loadings are investigated. Concrete is considered to be a two-phase composite made up of micro-cracks and solid parts which consist of coarse aggregate particles and a cement mortar matrix. The cement mortar matrix is assumed to be elastic, homogeneous and isotropic. Based on the Moil-Tanaka concept of average stress and the Eshelby equivalent inclusion theory, a dynamic constitutive model is developed to simulate the impact responses of concrete. The impact compression experiments of concrete and cement mortar are also carried out. Experimental results show that concrete and cement mortar are rate-dependent. Under the same impact velocity, the load-carrying capacity of concrete is higher than that of cement mortar. Whereas, the maximum strain of concrete is lower than that of cement mortar. Regardless of whether it is concrete or cement mortar, with the increase in the impact velocity, the fragment size of specimens after experiment decreases.
基金The National Natural Science Foundation of China(No. 51078115)
文摘In order to investigate the damage and deformation mechanism of large scale steel fixed-roof oil-storage tanks under the combustible gas explosion, a series of explosion experiments of scaled models are conducted. The l: 25 scaled numerical models of oil-storage tanks with a capacity of 5 000 m3 are also set up by ANSYS/LS-DYNA software, and their damage processes under the blast impact are numerically simulated. Both the experimental results and the numerical simulations show that the blast loading curve displays a pressure jump instantaneously at the moment of contact with the experimental models, and the overpressure peaks at the stagnation area of the outer surface on the blast side. The yield range first appears at the stagnation area and then propagates to the neighboring parts, and the irregular plastic hinge circle obviously appears around the deformation area, which results in the concaved buckling of the tank inner surface. During the whole process, the inner liquid not only impacts on the structures, but also absorbs and consumes part of the blast energy.
文摘For a building structure subjected to impulsive loading, particularly shock and impact loading , the response of the critical columns is crucial to the behaviour of the entire system during and after the blast loading phase. Therefore, an appropriate evaluation of the column response and damage under short-duration impulsive loading is important in a comprehensive assessment of the performance of a building system. This paper reports a dynamic analysis approach for the response of RC columns subjected to impulsive loading. Considering that the dynamic response of a column in a frame structure can also be affected by the floor movement which relates to the global vibration of the frame system, a generic column-mass model is used, in which a concentrated mass is attached to the column top to simulate the effect of a global vibration. To take into account the high shear effect under impulsive load, the model is formulated using Timoshenko beam theory, and three main nonlinear mechanisms are considered. Two typical scenarios, one under a direct air blast loading, and another under a blast-induced ground excitation, are analyzed and the primary response features are highlighted.
文摘The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis.
文摘Having an accurate understanding of concrete behavior under effects of high strain rate loading with the aim of reducing incurred damages is of great importance. Due to complexities and high costs of experimental research, numerical studies can be an appropriate alternative for experimental methods. Therefore, in this research capability of the finite element method for predicting concrete behavior at various loading conditions is evaluated by LS-DYNA software. First, the proposed method is presented and then is validated in three stages under different conditions. Results of load-lnidspan displacement showed good agreement between experimental and finite element results. Capability of finite element method in analyses of beams under various rates of loading was also validated by low error of the results. In addition, the proposed method has reasonable ability to evaluate reinforced concrete beams under various loading rates and different conditions.
基金Projects(41272304,51304241,51204068)supported by the National Natural Science Foundation of ChinaProject(2014M552164)supported by the Postdoctoral Science Foundation of ChinaProject(20130162120015)supported by the PhD Programs Foundation of Ministry of Education of China
文摘To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.
文摘Strain growth is a phenomenon observed in containment vessels subjected to internal blast loading. The elastic response of the vessel may become larger in a later stage compared to its response during the initial stage. The dynamic responses of infinitely long cylindrical containment vessels subjected to uniformly-distributed internal blast loading are studied using LS-DYNA. The development of bending modes and the interaction between the breathing mode and bending modes are observed. The methodology developed for dynamic elastic buckling analysis is employed to study the strain growth phenomenon in explosion containment vessels. It is shown that the dynamic instable vibration of a containment vessel is the basic mechanism of strain growth.
文摘Hydroelasticity caused by water impact is of concem in many applications of ocean engineering/naval architect and is a complicated physical phenomenon. The authors have developed a coupled Eulerian scheme with Lagrangian particles to combine advantages and to compensate disadvantages in both grid based method and particle based method. In this study, the developed numerical model was applied to hydroelastic problems due to impact pressure such as water entry of an elastic cylinder and elastic tanker motion in wave. The authors showed the numerical results which is overall agreement with experimental results. The proposed numerical scheme can be useful and effectiveness to evaluate hydroelasticity and ship-wave interaction in nonlinear wave motion with breaking.
文摘In order to qualify shock resistance performance of shipboard equipments and simulate real underwater explosion environment,a novel dual-pulse shock test machine is proposed.The new machine will increase testing capability and meet special shock testing requirement.Two key parts of the machine,the velocity generator and the shock pulse regulator,play an important role in producing the positive acceleration pulse and the succeeding negative acceleration pulse,respectively.The generated dual-pulse shock for test articles is in conformity with an anti-shock test specification.Based on the impact theory,a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism that involves conversion of gas potential energy and dissipation of kinetic energy.Simulation results have demonstrated that the proposed machine is able to produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain,which sets up a base for the construction of the machine.