On the basis of ANSYS finite element model(FEM) software, the deep-level rockburst in Fuxin coalfield was simulated numerically. Based on Haizhou Mine and Wulong Mine as two typical deep-level rockburst examples in Fu...On the basis of ANSYS finite element model(FEM) software, the deep-level rockburst in Fuxin coalfield was simulated numerically. Based on Haizhou Mine and Wulong Mine as two typical deep-level rockburst examples in Fuxin coalfield, the rules and characteristics of the deep-level rockburst were analyzed. And the models were es- tablished. For Haizhou mine, the relationship between mining distance and rockburst was presented when 100, 300, 600 m were mined in 3313 working face. When 300 m were mined, the rockburst began to emerge. When 600 m were mined, the rockburst was the most possible to happen and the compression stress of the working face reached to the maximum value. The effect of tectonic stress on synclinal axis is also a key factor to rockburst occurrence. This was verified by the rockburst happened when 496 m were mined. For Wulong mine, based on the 311 working face as an example, the contours of Y stress in the roof and floor were obtained when the mining distance were 100, 200, 300 and 400 m. When 100 and 400 m were mined, the high stress con- centration regions occurred in the front of working face. This shows the rockburst is easy to happen. It is confirmed by the rockburst when 91m were mined in 311 working plane. The above indicates that the numerical simulation has instructive rule to study the deep-level rockburst in Fuxin coalfield.展开更多
基金Supported by National Nature Science Foundation of China (50490275)
文摘On the basis of ANSYS finite element model(FEM) software, the deep-level rockburst in Fuxin coalfield was simulated numerically. Based on Haizhou Mine and Wulong Mine as two typical deep-level rockburst examples in Fuxin coalfield, the rules and characteristics of the deep-level rockburst were analyzed. And the models were es- tablished. For Haizhou mine, the relationship between mining distance and rockburst was presented when 100, 300, 600 m were mined in 3313 working face. When 300 m were mined, the rockburst began to emerge. When 600 m were mined, the rockburst was the most possible to happen and the compression stress of the working face reached to the maximum value. The effect of tectonic stress on synclinal axis is also a key factor to rockburst occurrence. This was verified by the rockburst happened when 496 m were mined. For Wulong mine, based on the 311 working face as an example, the contours of Y stress in the roof and floor were obtained when the mining distance were 100, 200, 300 and 400 m. When 100 and 400 m were mined, the high stress con- centration regions occurred in the front of working face. This shows the rockburst is easy to happen. It is confirmed by the rockburst when 91m were mined in 311 working plane. The above indicates that the numerical simulation has instructive rule to study the deep-level rockburst in Fuxin coalfield.