A study was undertaken to determine the effects of several key geometry influencing factors on the impact response and energy absorption behavior of the glass fibre reinforced epoxy composites at low and intermediate ...A study was undertaken to determine the effects of several key geometry influencing factors on the impact response and energy absorption behavior of the glass fibre reinforced epoxy composites at low and intermediate energies.The energy-balance model was employed for characterising the energy absorption behavior and it depends strongly on the plate diameter and thickness.In addition,the damage vs.energy and force maps is effective in monitoring damage growth within the composite panel.The response of the composite laminate configurations characterized by different stacking sequences subjected to low velocity impacts with different impact energies have also been studied to estimate the damage initiation of composites.展开更多
Lightweight yet strong paper with high toughness is desirable especially for impact protection. Herein we demonstrated electrically conductive and mechanically robust paper(AP/PB-GP) made of reduced graphene oxide via...Lightweight yet strong paper with high toughness is desirable especially for impact protection. Herein we demonstrated electrically conductive and mechanically robust paper(AP/PB-GP) made of reduced graphene oxide via interfacial crosslinking with 1-aminopyrene(AP) and 1-pyrenebutyrat(PB) small molecules. The AP/PB-GP with thickness of over ten micrometer delivers a record-high toughness(~69.67 ± 15.3 MJ m^(-3) in average), simultaneously with superior strength(close to 1 GPa), allowing an impressive specific penetration energy absorption(~0.17 MJ kg^(-1)) at high impact velocities when used for ballistic impact protection. Detailed interfacial and structural analysis reveals that the reinforcement is synergistically determined by π-π interaction and H-bonding linkage between adjacent graphene lamellae. Especially, the defective pores within the graphene platelets benefit the favorable adsorption of the pyrene-containing molecules, which imperatively maximizes the interfacial binding, facilitating deflecting crack and plastic deformation under loading. Density functional theory simulation suggests that the coupling between the polar functional groups, e.g., –COOH, at the edges of graphene platelets and –NH_(2) and –COOH of AP/PB are critical to the formation of hydrogen bonding network.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11302151)the Fundamental Research Funds for the Central Universities
文摘A study was undertaken to determine the effects of several key geometry influencing factors on the impact response and energy absorption behavior of the glass fibre reinforced epoxy composites at low and intermediate energies.The energy-balance model was employed for characterising the energy absorption behavior and it depends strongly on the plate diameter and thickness.In addition,the damage vs.energy and force maps is effective in monitoring damage growth within the composite panel.The response of the composite laminate configurations characterized by different stacking sequences subjected to low velocity impacts with different impact energies have also been studied to estimate the damage initiation of composites.
基金supported by the National Natural Science Foundation of China (51772282,51972299)funding from Hefei Center for Physical Science and Technology。
文摘Lightweight yet strong paper with high toughness is desirable especially for impact protection. Herein we demonstrated electrically conductive and mechanically robust paper(AP/PB-GP) made of reduced graphene oxide via interfacial crosslinking with 1-aminopyrene(AP) and 1-pyrenebutyrat(PB) small molecules. The AP/PB-GP with thickness of over ten micrometer delivers a record-high toughness(~69.67 ± 15.3 MJ m^(-3) in average), simultaneously with superior strength(close to 1 GPa), allowing an impressive specific penetration energy absorption(~0.17 MJ kg^(-1)) at high impact velocities when used for ballistic impact protection. Detailed interfacial and structural analysis reveals that the reinforcement is synergistically determined by π-π interaction and H-bonding linkage between adjacent graphene lamellae. Especially, the defective pores within the graphene platelets benefit the favorable adsorption of the pyrene-containing molecules, which imperatively maximizes the interfacial binding, facilitating deflecting crack and plastic deformation under loading. Density functional theory simulation suggests that the coupling between the polar functional groups, e.g., –COOH, at the edges of graphene platelets and –NH_(2) and –COOH of AP/PB are critical to the formation of hydrogen bonding network.