期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于混沌多目标蚁狮优化算法和核极限学习机的冲击性负荷预测模型 被引量:1
1
作者 黄裕春 贾巍 +3 位作者 雷才嘉 方兵华 刘涌 李洋洋 《现代电力》 北大核心 2023年第6期1043-1051,共9页
针对冲击性负荷预测问题,提出了一种基于混沌多目标蚁狮优化算法(chaotic multi-objective antlion optimization algorithm,CMOALO)和核极限学习机(kernel extreme learning machine,KELM)的冲击性负荷预测模型。首先,为了降低预测难度... 针对冲击性负荷预测问题,提出了一种基于混沌多目标蚁狮优化算法(chaotic multi-objective antlion optimization algorithm,CMOALO)和核极限学习机(kernel extreme learning machine,KELM)的冲击性负荷预测模型。首先,为了降低预测难度,使用集合经验模式分解(ensemble empirical mode decomposition,EEMD)将原始冲击性负荷分解为一系列更为平稳的子序列。为了同时提升模型的预测精度和稳定性,提出了一种MOALO;其次,为进一步提高算法的解搜索能力,将MOALO与混沌运算融合,提出了CMOALO算法,将其用于优化KELM。最后通过某地区真实采集的冲击性负荷数据对所提出的EEMD-CMOALOKELM模型进行验证。通过案例分析可知,所提出的冲击性负荷预测模型,无论是在预测精度还是预测稳定性方面,性能最好。 展开更多
关键词 冲击性负荷预测 集合经验模式分解 混沌多目标蚁狮优化算法 核极限学习机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部