针对机械早期故障引起的冲击特征微弱,易受强背景信号和噪声的干扰而难以提取的问题,提出一种奇异值分解(Singular Value Decomposition,SVD)差分谱与S变换相结合的微弱冲击特征提取方法。将原始信号构造成Hankel矩阵,采用SVD对重构矩...针对机械早期故障引起的冲击特征微弱,易受强背景信号和噪声的干扰而难以提取的问题,提出一种奇异值分解(Singular Value Decomposition,SVD)差分谱与S变换相结合的微弱冲击特征提取方法。将原始信号构造成Hankel矩阵,采用SVD对重构矩阵进行分解;利用奇异值差分谱确定降噪阶次进行降噪;采用S变换对降噪后的信号进行时频分析,提取信号中的微弱冲击特征信息。通过数值仿真和实际轴承故障数据的对比,表明该方法可有效辨别轴承振动信号中故障引起的早期微弱冲击特征,为轴承故障诊断提供先验信息。展开更多
文摘针对机械早期故障引起的冲击特征微弱,易受强背景信号和噪声的干扰而难以提取的问题,提出一种奇异值分解(Singular Value Decomposition,SVD)差分谱与S变换相结合的微弱冲击特征提取方法。将原始信号构造成Hankel矩阵,采用SVD对重构矩阵进行分解;利用奇异值差分谱确定降噪阶次进行降噪;采用S变换对降噪后的信号进行时频分析,提取信号中的微弱冲击特征信息。通过数值仿真和实际轴承故障数据的对比,表明该方法可有效辨别轴承振动信号中故障引起的早期微弱冲击特征,为轴承故障诊断提供先验信息。